Solomon Practice Paper

Pure Mathematics 5H

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	8	
2	8	
3	8	
4	9	
5	11	
6	13	
7	18	
Total:	75	

How I can achieve better:

1. A curve has the equation

$$
2 x^{2}+y^{2}=4
$$

Find the radius of curvature of the curve at the point $(1,-\sqrt{2})$.
2. (a) Using the definition of $\cosh (x)$ in terms of exponential functions show that $\cosh (x)$ is an even function.
(b) Given that $x>0$ and $y>0$, solve the simultaneous equations
(b) Given that $x>0$ and $y>0$, solve the simultaneous equans

$$
\begin{aligned}
\ln (x) & =\operatorname{arcosh}\left(\frac{5}{3}\right) \\
\cosh (3 x-y) & =1 .
\end{aligned}
$$

3. Find

$$
\int \frac{1}{13 \cosh (x)-5 \sinh (x)} \mathrm{d} x .
$$

4. (a) Given that $y=\arcsin (2 x-1)$, prove that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x-x^{2}} .
$$

The tangent to the curve $y=\arcsin (2 x-1)$ at the point where $x=\frac{3}{4}$ meets the y-axis at A.
(b) Find the exact value of the y-coordinate of A.
5. The point $P\left(a t^{2}, 2 a t\right), t \neq 0$, lies on the parabola C with equation $y^{2}=4 a x$.
(a) Show that an equation of the tangent to C at P is

$$
y t=x+a t^{2} .
$$

The tangent to C at P meets the x-axis at Q and the y-axis at R. M is the mid-point of $Q R$.
(b) Find the coordinates of M.

Given that $O M$ is perpendicular to $O P$, where O is the origin,
(c) show that $t^{2}=2$.
6.

$$
I_{n}=\int \frac{\cos (n \theta)}{\sin (\theta)} \mathrm{d} \theta, \quad n \in \mathbb{N}
$$

(a) By considering $I_{n}-I_{n-2}$, or otherwise, show that

$$
I_{n}=\frac{2 \cos (n-1) \theta}{n-1}+I_{n-2}
$$

(b) Hence evaluate

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos (5 \theta)}{\sin (\theta)} \mathrm{d} \theta
$$

7. The ellipse C has equation

$$
\frac{x^{2}}{a}+\frac{y^{2}}{b}=1
$$

where a and b are positive constants and $a>b$.
The coordinates of the foci of C are $(\pm \sqrt{3}, 0)$, and the equations of its directrices are $x= \pm \frac{4}{\sqrt{3}}$.
(a) Find the value of a and the value of b.

The ellipse is rotated completely about the x-axis.
(b) Show that the area of the surface of revolution generated is given by

$$
A=\frac{\pi}{2} \int_{-2}^{2} \sqrt{16-3 x^{2}} \mathrm{~d} x .
$$

(c) Use integration to show that

$$
A=\frac{8}{9} \pi^{2} \sqrt{3}+2 \pi
$$

