Solomon Practice Paper Pure Mathematics 5E

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	4	
2	6	
3	9	
4	9	
5	11	
6	11	
7	11	
8	14	
Total:	75	

How I can achieve better:

1. A student without a calculator must find the value of x given that $\operatorname{arctanh}(x)=\ln (3)$. With clear working, show how the student could find x and state the value he should obtain.
2.

$$
\mathrm{f}(x)=\sin (2 x)-x \cosh ^{2}(x)
$$

(a) Find $\mathrm{f}^{\prime}(x)$.
(b) Show that the curve with equation $y=\mathrm{f}(x)$ has a stationary point in the interval $0.3<x<$ 0.4 .
3. Given that

$$
\int_{0}^{\frac{2 \pi}{3}} \frac{1}{5+4 \cos (x)} \mathrm{d} x=a \pi, \quad a \in \mathbb{Q}
$$

use the substitution $t=\tan \left(\frac{1}{2} x\right)$ to find the value of a.
4. The curve C has equation

$$
y=a \cosh \left(\frac{x}{a}\right),
$$

where a is a positive constant.
The area bounded by the curve C, the x-axis and the lines $x=-a$ and $x=a$ is rotated through 2π radians about the x-axis.

Show that the curved surface area of the solid generated is $\pi a^{2}(\sinh (2)+2)$.
5. The intrinsic equation of the curve C is $s=2 \psi$.

Given that s is measured from the origin,
(a) find a Cartesian equation of C,
(b) sketch C.
6. (a) Using the definitions of hyperbolic functions in terms of exponential functions, prove that

$$
\cosh (x+y) \equiv \cosh (x) \cosh (y)+\sinh (x) \sinh (y) .
$$

Given that

$$
5 \cosh (x)+4 \sinh (x) \equiv R \cosh (x+\alpha)
$$

find
(b) the value of R,
(c) the value of α, giving your answer in terms of natural logarithms.
(d) Hence, or otherwise, state the minimum value of $5 \cosh (x)+4 \sinh (x)$.
7.

$$
I_{n}=\int_{0}^{1} x^{n} \mathrm{e}^{x^{2}} \mathrm{~d} x, \quad n \geq 0
$$

(a) Show that

$$
I_{n}=\frac{1}{2} \mathrm{e}-\frac{1}{2}(n-1) I_{n-2}, \quad n \geq 2
$$

(b) Hence find

$$
I_{n}=\int_{0}^{1} x^{5} e^{x^{2}} \mathrm{~d} x
$$

giving your answer in terms of e.
8. The line with equation $y=m x+c$ is a tangent to the parabola with equation $y^{2}=8 x$.
(a) Show that $m c=2$.

The lines l_{1} and l_{2} are tangents to both the parabola with equation $y^{2}=8 x$ and the circle with equation $x^{2}+y^{2}=2$.
(b) Find the equations of l_{1} and l_{2}.

