Solomon Practice Paper
Pure Mathematics 5C
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	7	
3	10	
4	12	
5	12	
6	13	
7	16	
Total:	75	

How I can achieve better:

1. The curve C has intrinsic equation

$$
s=4 \sec ^{3}(\psi), \quad 0 \leq \psi<\frac{\pi}{2}
$$

Find the radius of curvature of C at the point where $\psi=\frac{\pi}{4}$.
2. Solve the equation

$$
5 \operatorname{coth}(x)+1=7 \operatorname{cosech}(x),
$$

giving your answer in terms of natural logarithms.
3. (a) Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \arccos (x)=-\frac{1}{\sqrt{1-x^{2}}}
$$

(b) The curve with equation

$$
y=\arccos (x)-\frac{1}{2} \ln \left(1-x^{2}\right), \quad-1<x<1
$$

has a stationary point in the interval $0<x<1$.
Find the exact coordinates of this stationary point.
4. (a) Express $3-6 x-9 x^{2}$ in the form $a-(b x+c)^{2}$ where a, b and c are constants.

Hence, or otherwise, find
(b)

$$
\int \frac{1}{\sqrt{3-6 x-9 x^{2}}} \mathrm{~d} x
$$

(c) expressing your answer to part (c) in terms of natural logarithms.

$$
\int_{-\frac{1}{3}}^{0} \frac{1}{\sqrt{3-6 x-9 x^{2}}} \mathrm{~d} x
$$

5.

$$
\mathrm{f}(x)=\operatorname{arctanh}\left(\frac{x^{2}-1}{x^{2}+1}\right), \quad x>0 .
$$

(a) Using the definitions of $\sinh (x)$ and $\cosh (x)$ in terms of exponentials, express $\tanh (x)$ in terms of e^{x} and e^{-x}.
(b) Hence prove that $\mathrm{f}(x)=\ln (x)$.
(c) Hence, or otherwise, show that the area bounded by the curve $y=\operatorname{arctanh}\left(\frac{x^{2}-1}{x^{2}+1}\right)$, the positive x-axis and the line $x=2 \mathrm{e}$ is $2 \mathrm{e} \ln (2)+1$.
6. The ellipse C has equation

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

(a) Find an equation of the normal to C at the point $P(5 \cos (\theta), 3 \sin (\theta))$.

The normal to C at P meets the coordinate axes at Q and R.
Given that $O R S Q$ is a rectangle, where O is the origin,
(b) show that, as θ varies, the locus of S is an ellipse and find its equation in Cartesian form.
7.

$$
I_{n}(x)=\int_{0}^{x} \cos ^{n}(2 t) \mathrm{d} t, \quad n \geq 0
$$

(a) Show that

$$
n I_{n}(x)=\frac{1}{2} \sin (2 x) \cos ^{n-1}(2 x)+(n-1) I_{n-2}(x), \quad n \neq 2 .
$$

(b) Find $I_{0}\left(\frac{\pi}{4}\right)$ in terms of π.

Figure shows the curve with polar equation

$$
r=a \cos ^{2}(2 \theta), \quad 0 \leq \theta \leq \frac{\pi}{4},
$$

where a is a positive constant.

(c) Using your answers to parts (a) and (b), or otherwise, calculate the area bounded by the curve and the half-lines $\theta=0$ and $\theta=\frac{\pi}{4}$.

