Solomon Practice Paper

Pure Mathematics 5B

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	7	
2	8	
3	9	
4	11	
5	12	
6	13	
7	15	
Total:	75	

How I can achieve better:

1. Given that

$$
y \arccos (x)-\frac{x}{\pi} \mathrm{e}^{2 x}-1=0,
$$

find the value of at the point where $x=0$, giving your answer in terms of π.
2.

$$
\mathrm{f}(x)=5 \cosh (x)+3 \sinh (x) .
$$

The minimum value of $\mathrm{f}(x)$ occurs at the point $(p \ln (q), r)$ where p, q and r are integers.
Find the values of p, q and r.
3. The line $y=m x+c$ is a tangent to the rectangular hyperbola with equation $x y=-9$.
(a) Show that $c= \pm 6 \sqrt{m}$.
(b) Hence, or otherwise, find the equations of the tangents from the point $(4,-2)$ to the rectangular hyperbola $x y=-9$.
4. The curve C is defined by

$$
y^{2}=x, \quad x \geq 0, \quad y \geq 0
$$

The region between C, the x-axis and the line $x=1$ is rotated through 2π about the x-axis. Show that the area of the surface generated is

$$
\frac{\pi}{6}(5 \sqrt{5}-1)
$$

5. (a) Using the definition of $\cosh (x)$ in terms of exponential functions, express $\operatorname{sech}(x)$ in terms of e^{x} and e^{-x}.
(b) Sketch the graph of $y=\operatorname{sech}(x)$.
(c) Show that

$$
\int \operatorname{sech}(x) \mathrm{d} x=2 \arctan \left(\mathrm{e}^{x}\right)+c .
$$

The curve C has equation $y=\operatorname{sech}(x)$. The region between C, the x-axis and the lines $x=-a$ and $x=a$, where a is a positive constant, is rotated through 2π about the x-axis.
(d) Find the volume of revolution of the solid generated.
(e) Find the limit of the volume of revolution as $a \rightarrow \infty$.
6.

$$
I_{n} \int_{0}^{\sqrt{2}}\left(2-x^{2}\right)^{n} \mathrm{~d} x, \quad n \geq 0
$$

(a) Show that

$$
I_{n}=\frac{4 n}{2 n+1} I_{n-1}, \quad n \geq 1
$$

(b) Hence evaluate I_{3}, leaving your answer in surd form.
7. The curve C has intrinsic equation

$$
s=\ln \left(\tan \left(\frac{1}{2} \psi\right)\right), \quad 0<\psi \leq \frac{\pi}{2}
$$

(a) Show that radius of curvature of C is given by $\rho \csc (\psi)$.

Given that $y=\psi=\frac{\pi}{2}$ when $x=0$,
(b) show that $y=\psi$,
(c) use integration to show that a Cartesian equation of C is $x=\ln (\sin (y))$.

