Solomon Practice Paper

Pure Mathematics 4H

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	6	
2	8	
3	9	
4	9	
5	10	
6	15	
7	18	
Total:	75	

How I can achieve better:

1. (a) Given that $\mathrm{f}(r)=r$!, show that $\mathrm{f}(r+1)-\mathrm{f}(r)=r \times r$!.
(b) Hence find $\sum_{r=1}^{n}(r \times r!)$.
2. (a) Given that

$$
y=\frac{2 x}{x^{2}+9},
$$

express x in terms of y.
(b) Hence prove that for all real values of x

$$
-\frac{1}{a} \leq \frac{2 x}{x^{2}+9} \leq \frac{1}{a},
$$

where a is a positive integer which you should find.
3. Find the general solution of the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+x y=1-y,
$$

giving your answer in the form $y=\mathrm{f}(x)$.
4. Figure shows part of the curves $y=x^{2}$ and $y=\frac{3}{3 x-2}$.

The curves meet at the point with x-coordinate α.
(a) Find the integer N such that $\frac{N}{10}<\alpha<\frac{N+1}{10}$.
(b) Use interval bisection on the interval found in part (a) to find the value of α correct to 2 decimal places.
5. Given that

$$
\mathrm{f}(z) \equiv z^{4}-4 z^{3}+k z^{2}-4 z+13
$$

where k is a real constant, and that $z=\mathbf{i}$ is a solution of the equation $\mathrm{f}(z)=0$,
(a) show that $k=14$,
(b) find all solutions of the equation $\mathrm{f}(z)=0$.
6. The shape of a company logo is to be the region enclosed by the curve with polar equation

$$
r^{2}=a^{2} \sin (2 \theta), \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

A sign in the shape of the logo is to be made by cutting the area enclosed by the curve from a square sheet of metal $O P Q R$ where O is the pole and R lies on the initial line, $\theta=0$, as shown in Figure.
$P Q$ and $Q R$ are tangents to the curve, parallel and perpendicular to the initial line respectively, at the points A and B on the curve.
(a) Find the value of θ at the point A.
(b) Show that the area of $O P Q R$ is $\frac{3 \sqrt{3}}{8} a^{2}$.
(c) Find the area of the metal sheet which is not used.
7. Given that $x=k \mathrm{e}^{-t}$ satisfies the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+6 x=8 \mathrm{e}^{-t}
$$

(a) find the value of k.
(b) Hence find the solution of the differential equation for which $x=1$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=3$ at $t=0$.

The maximum value of x occurs when $t=T$.
(c) Show that the maximum value of x is $\frac{40}{27}$ and find the value of T.

