Solomon Practice Paper
Pure Mathematics 4G
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	7	
2	7	
3	9	
4	11	
5	12	
6	12	
7	17	
Total:	75	

How I can achieve better:

1. Find the set of values of x for which

$$
\frac{x^{2}-12}{x} \geq 1
$$

2. Show that the sum of the first n terms of the series

$$
5^{2}+9^{2}+13^{3}+17^{2}+\ldots
$$

is given by $\frac{1}{3} n\left(16 n^{2}+36 n+23\right)$.
3.

$$
\mathrm{f}(x) \equiv x^{3}-5 x^{2}+2
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval $[0,1]$.
(b) Use the Newton-Raphson method with initial value $x=0.5$ to find a value for α which is correct to 2 decimal places.
(c) Give a reason why the Newton-Raphson method fails if an initial value of $x=0$ is used in part (b).
4. The complex number z is given by

$$
z=\frac{1+\mathbf{i} \sqrt{3}}{1-\mathbf{i} \sqrt{3}} .
$$

(a) Show that z can be expressed in the form $\lambda(1-\mathbf{i} \sqrt{3})$ where λ is a rational number which you should find.
(b) Find the modulus and argument of z.
(c) Hence, or otherwise, find the modulus and argument of

$$
\left(\frac{1+\mathbf{i} \sqrt{3}}{1-\mathbf{i} \sqrt{3}}\right)^{4}
$$

5. (a) Find the values of p and q such that $y=p \sin (x)+q \cos (x)$ is a particular integral of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=\sin (x)
$$

(b) Find the general solution of this differential equation.
6. (a) Show that
where c is an arbitrary constant.
(b) Find the general solution of the differential equation

$$
\sin (x) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 y \cos (x)=1
$$

Given that $y=0$ when $x=\frac{\pi}{4}$,
(c) show that when $x=\frac{\pi}{3}$,

$$
y=\frac{2}{3}(\sqrt{2}-1)
$$

7. Figure shows the curve C with polar equation

$$
r=2(1+\cos (\theta)), \quad-\pi<\theta \leq \pi
$$

and the line l with polar equation

$$
r \cos (\theta)=\frac{3}{2}
$$

referred to the pole O and initial line $\theta=0$.
(a) Find the polar coordinates of the points A and B, where l intersects C.
(b) Show that the area of triangle $O A B$ is $\frac{9 \sqrt{3}}{4}$.
(c) Hence find the area of the shaded region bounded by C and l.

