Solomon Practice Paper

Pure Mathematics 4F

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	4	
2	7	
3	7	
4	7	
5	10	
6	10	
7	14	
8	16	
Total:	75	

How I can achieve better:

1. Figure shows the curve with polar equation

$$
r=a \theta, \quad 0 \leq \theta<2 \pi, \quad a>0
$$

Find the area of the finite region bounded by the curve and the initial line $\theta=0$.
2. Find the set of values of x for which

$$
\frac{(x-1)(x+2)}{x+4}>4 .
$$

3.

$$
\mathrm{f}(x)=3 x^{5}-7 x^{2}+3 .
$$

(a) Show that there is a root, α, of the equation $\mathrm{f}(x)=0$ in the interval $[0,1]$.
(b) Use linear interpolation once on the interval $[0,1]$ to estimate the value of α.

There is another root, β, of the equation $\mathrm{f}(x)=0$ close to -0.62 .
(c) Use the Newton-Raphson method once to obtain a second approximation to β, giving your answer correct to 3 decimal places.
4. The Cartesian equation of the curve C is

$$
\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right) .
$$

(a) Show that, in polar coordinates, the equation of curve C can be written as

$$
r^{2}=a^{2} \cos (2 \theta)
$$

(b) Sketch the curve C for $0 \leq \theta<2 \pi$.
5. (a) Show that the substitution $y=\frac{1}{u}$ transforms the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x}-x y^{2}=0
$$

into the differential equation

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}-\frac{u}{x}+x=0
$$

(b) Hence find the solution of differential equation \star such that $y=1$ when $x=1$, giving your answer in the form $y=\mathrm{f}(x)$.
6. (a) Find $\sum_{r=n+1}^{2 n} r^{2}$ in terms of n.
(b) Hence, or otherwise, show that

$$
4 \leq \frac{\sum_{r=n+1}^{2 n} r^{2}}{\sum_{r=1}^{n} r^{2}}<7
$$

for all positive integer values of n.
Total: 10
7. A particle moves along the x-axis such that at time t its x-coordinate satisfies the differential equation

$$
2 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-5 \frac{\mathrm{~d} x}{\mathrm{~d} t}-3 x=20 \sin (t)
$$

(a) Find the general solution of this differential equation.

Initially the particle is at $x=5$.
Given that the particle's x-coordinate remains finite as $t \rightarrow \infty$,
(b) find an expression for x in terms of t.
8. The complex numbers z_{1} and z_{2} are given by

$$
z_{1}=\frac{1+\mathbf{i}}{1-\mathbf{i}}, \quad \text { and } \quad z_{2}=\frac{\sqrt{2}}{1-\mathbf{i}}
$$

(a) Find z_{1} in the form $a+\mathbf{i} b$ where a and b are real.
(b) Write down the modulus and argument of z_{1}.
(c) Find the modulus and argument of z_{2}.
(d) Show the points representing z_{1}, z_{2} and $z_{1}+z_{2}$ on the same Argand diagram, and hence find the exact value of $\tan \left(\frac{3 \pi}{8}\right)$.

