Solomon Practice Paper

Pure Mathematics 4E

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	7	
2	7	
3	9	
4	10	
5	12	
6	13	
7	17	
Total:	75	

How I can achieve better:

1．The complex number w is given by $w=\frac{10+5 \mathbf{i}}{2-\mathbf{i}}$ ．
（a）Express w in the form $a+\mathbf{i} b$ where a and b are real．
（b）Using your answer to part（a）find the complex number z such that

$$
z+2 z^{\star}=w
$$

Total： 7
2．Show that

$$
\sum_{r=0}^{n}(r+1)(r+2)=\frac{1}{3}(n+1)(n+2)(n+3) .
$$

3．Find the equation of the curve which passes through the origin and for which

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x+y
$$

giving your answer in the form $y=\mathrm{f}(x)$ ．
4．The curve C has the polar equation

$$
r=a(1+\sin (\theta)), \quad 0 \leq \theta \leq \frac{\pi}{2} .
$$

（a）Sketch the curve C ．
（b）Find the polar coordinates of the point on the curve where the tangent to the curve is perpendicular to the initial line $\theta=0$ ．

5．（a）Find，in terms of a and b ，the equations of the asymptotes to the curve with equation

$$
y=\frac{a x-1}{x+b},
$$

where a and b are positive constants．
（b）Sketch the curve

$$
y=\frac{a x-1}{x+b},
$$

showing the coordinates of any points of intersection with the coordinate axes．
（c）Hence，or otherwise，find the set of values of x for which

$$
\left|\frac{3 x-1}{x+2}\right|<2 .
$$

6. (a) Show that the equation $\mathrm{e}^{x}-4 \sin (x)=0$ has a root, α, in the interval $[0,1]$ and a root, β, in the interval [1, 1.5].
(b) Using the Newton-Raphson method with an initial value of $x=0.5$, find α correct to 2 decimal places.
(c) Use linear interpolation once between the values $x=1$ and $x=1.5$ to find an approximate value for β, giving your answer correct to 1 decimal place.
(d) Determine whether or not your answer to part (c) gives the value of β correct to 1 decimal place.
7. (a) Given that y is a function of t and that $x=t^{\frac{1}{2}}$, where $x>0$, show that
i. $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 t^{\frac{1}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}$,
ii. $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \frac{\mathrm{~d} y}{\mathrm{~d} t}+4 t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}$.
(b) Use your answers to part (a) to show that the substitution $x=t^{\frac{1}{2}}$ transforms the differential equation

$$
\frac{1}{x^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\left(\frac{4}{x}-\frac{1}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+3 y=3 x^{2}+5
$$

into the differential equation

$$
4 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+8 \frac{\mathrm{~d} y}{\mathrm{~d} t}+3 y=3 t+5
$$

(c) Hence find the general solution of differential equation \star.

