Solomon Practice Paper
Pure Mathematics 4C
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	6	
2	9	
3	9	
4	10	
5	12	
6	13	
7	16	
Total:	75	

How I can achieve better:

1. Find the set of values of x for which

$$
|x-2|>2|x+1|
$$

2. (a) By using the substitution $y=v x$, or otherwise, find the general solution of the differential equation

$$
x y=\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+y^{2} .
$$

(b) Given also that $y=2$ when $x=1$, show that for $x>0$

$$
y^{2}=2 x^{2}(\ln (x)+2) .
$$

3. (a) Find the sum of the series

$$
2^{3}+4^{3}+6^{3}+\ldots+(2 n)^{3}
$$

giving your answer in a simplified form.
(b) Hence, or otherwise, show that the sum of the series

$$
1^{3}-2^{3}+3^{3}-4^{3}+\ldots+(2 n-1)^{3}-(2 n)^{3}
$$

is $-n^{2}(4 n+3)$.
4. Find the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=2 \mathrm{e}^{3 x}
$$

5. Figure shows part of the curve $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x) \equiv 2 x-\tan (x), \quad x \in \mathbb{R}, \quad 0 \leq x<\frac{\pi}{2}
$$

(a) Show that there is a root, α, of the equation $\mathrm{f}(x)=0$ in the interval $(1,1.5)$.
(b) Use the Newton-Raphson method with an initial value of $x=1.25$ to find α correct to 2 decimal places and justify the accuracy of your answer.
(c) Explain with the aid of a diagram why the Newton-Raphson method fails if an initial value of $x=0.75$ is used when trying to find α.
6. The complex numbers z and w are defined such that

$$
\begin{aligned}
3 z+w & =14 \\
z-\mathbf{i} w & =15-9 \mathbf{i}
\end{aligned}
$$

(a) Show that $z=3-4 i$ and find w in the form $a+\mathbf{i} b$, where a and b are real numbers.
(b) Find the square roots of z in the form $c+\mathbf{i} d$, where c and d are real numbers.
7. Figure shows the curves with polar equations

$$
\begin{array}{ll}
r=4 \sin (2 \theta), & 0 \leq \theta \leq \frac{\pi}{2} \\
r=4 \cos (\theta), & 0 \leq \theta \leq \frac{\pi}{2}
\end{array}
$$

(a) Find the polar coordinates of the point P where the two curves intersect.
(b) Find the exact area of the shaded region bounded by the two curves.

