Solomon Practice Paper

Pure Mathematics 4B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	8	
3	9	
4	9	
5	10	
6	15	
7	18	
Total:	75	

How I can achieve better:

- •
- •
- •

Last updated: May 5, 2023

fferential equation

Given also that
$$y = 2$$
 when $x = \frac{\pi}{6}$, find the exact value of y when $x = \frac{2\pi}{3}$. [3]

4. (a) Find the general solution of the differential equation
$$\frac{\mathrm{d}y}{\mathrm{d}x} = u\cot(x) = \sin(2x)$$

$$dx = \frac{\pi}{2} \text{ (2.2)}.$$
(3) Given also that $u = 2$ when $x = \frac{\pi}{2}$ find the exact value of u when $x = \frac{2\pi}{2}$

b) Given also that
$$y = 2$$
 when $x = \frac{\pi}{6}$, find the exact value of y when $x = \frac{2\pi}{3}$. [3]
Total: 9

6. The complex numbers z_1, z_2 and z_3 are given by

where a and b are rational constants.

Given that the modulus of $z_1 z_3$ is 50,

) Given also that
$$y = 2$$
 when $x = \frac{\pi}{6}$, find the exact value of y when $x = \frac{2\pi}{3}$.

5.

(

(a) Show that one root, α , of the equation f(x) = 0 lies in the interval $1.0 < \alpha < 1.1$.

 $f(x) \equiv x^3 - \ln(4 - x^2), \quad x \in \mathbb{R}, \quad -2 < x < 2.$

(b) Starting with x = 1.0, show that using the Newton-Raphson method twice gives an approx-[8] imation to α that is correct to 6 decimal places.

Total: 10

[2]

1. Find the set of values of x for which

$$|2x^2 - 5x| < x.$$

(a) Sketch the curve C with the polar equation 2.

$$r^2 = a^2 \sin^2(2\theta), \quad 0 \le \theta < 2\pi.$$

(b) Find the exact area of the region enclosed by one loop of the curve C.

3. (a) Show that

$$\sum_{r=1}^{n} (r^2 + 1)(r - 1) = \frac{1}{12}n(n - 1)(3n^2 + 5n + 8).$$

 $\sum_{r=5}^{25} (r^2 + 1)(r - 1).$

Total: 9

 $z_1 = 7 - \mathbf{i}, \quad z_2 = 1 + \mathbf{i}\sqrt{3}, \quad z_3 = a + \mathbf{i}b,$

[6]

[3]

[5]

[6]

[3]

[6]

Total: 8

(a) find the modulus of z_3 .

Given also that the argument of $\frac{z_2}{z_3}$ is $\frac{7\pi}{12}$,

- (b) find the argument of z_3 .
- (c) Find the values of a and b.
- (d) Show that $\frac{z_1}{z_3} = \frac{1}{5}(4+3\mathbf{i}).$ [3]
- (e) Represent z_1, z_3 and $\frac{z_1}{z_3}$ on the same Argand diagram.
- (f) By considering the modulus and argument of z_1 and z_3 , explain why

$$\frac{z_3}{z_1} = \left(\frac{z_1}{z_3}\right)^\star.$$

Total: 15

[3]

[3]

[2]

[2]

[2]

[3]

7. (a) Given that
$$x = e^t$$
, find $\frac{dy}{dx}$ in terms of $\frac{dy}{dt}$ and show that [5]

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \mathrm{e}^{-2t} \left(\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - \frac{\mathrm{d}y}{\mathrm{d}t} \right)$$

(b) Show that the substitution $x = e^t$ transforms the differential equation

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - x \frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 6x^2$$

into the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 2\frac{\mathrm{d}y}{\mathrm{d}t} - 3y = 6\mathrm{e}^{2t}.$$

(c) Given that when x = 1, y = 3 and $\frac{dy}{dx} = -5$, solve the differential equation [10]

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - x \frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 6x^2$$

Total: 18

www.CasperYC.club

Last updated: May 5, 2023