Solomon Practice Paper

Pure Mathematics 4B

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	6	
2	8	
3	9	
4	9	
5	10	
6	15	
7	18	
Total:	75	

How I can achieve better:

1. Find the set of values of x for which

$$
\left|2 x^{2}-5 x\right|<x
$$

2. (a) Sketch the curve C with the polar equation

$$
r^{2}=a^{2} \sin ^{2}(2 \theta), \quad 0 \leq \theta<2 \pi .
$$

(b) Find the exact area of the region enclosed by one loop of the curve C.
3. (a) Show that

$$
\sum_{r=1}^{n}\left(r^{2}+1\right)(r-1)=\frac{1}{12} n(n-1)\left(3 n^{2}+5 n+8\right)
$$

(b) Hence evaluate

$$
\sum_{r=5}^{25}\left(r^{2}+1\right)(r-1)
$$

4. (a) Find the general solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-y \cot (x)=\sin (2 x)
$$

(b) Given also that $y=2$ when $x=\frac{\pi}{6}$, find the exact value of y when $x=\frac{2 \pi}{3}$.
5.

$$
\mathrm{f}(x) \equiv x^{3}-\ln \left(4-x^{2}\right), \quad x \in \mathbb{R}, \quad-2<x<2 .
$$

(a) Show that one root, α, of the equation $\mathrm{f}(x)=0$ lies in the interval $1.0<\alpha<1.1$.
(b) Starting with $x=1.0$, show that using the Newton-Raphson method twice gives an approximation to α that is correct to 6 decimal places.
6. The complex numbers z_{1}, z_{2} and z_{3} are given by

$$
z_{1}=7-\mathbf{i}, \quad z_{2}=1+\mathbf{i} \sqrt{3}, \quad z_{3}=a+\mathbf{i} b
$$

where a and b are rational constants.
Given that the modulus of $z_{1} z_{3}$ is 50 ,
(a) find the modulus of z_{3}.

Given also that the argument of $\frac{z_{2}}{z_{3}}$ is $\frac{7 \pi}{12}$,
(b) find the argument of z_{3}.
(c) Find the values of a and b.
(d) Show that $\frac{z_{1}}{z_{3}}=\frac{1}{5}(4+3 \mathbf{i})$.
(e) Represent z_{1}, z_{3} and $\frac{z_{1}}{z_{3}}$ on the same Argand diagram.
(f) By considering the modulus and argument of z_{1} and z_{3}, explain why

$$
\frac{z_{3}}{z_{1}}=\left(\frac{z_{1}}{z_{3}}\right)^{\star} .
$$

7. (a) Given that $x=\mathrm{e}^{t}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $\frac{\mathrm{d} y}{\mathrm{~d} t}$ and show that

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\mathrm{e}^{-2 t}\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} t}\right)
$$

(b) Show that the substitution $x=\mathrm{e}^{t}$ transforms the differential equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=6 x^{2}
$$

into the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} t}-3 y=6 \mathrm{e}^{2 t}
$$

(c) Given that when $x=1, y=3$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=-5$, solve the differential equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=6 x^{2} .
$$

