Solomon Practice Paper
Pure Mathematics 4A
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	6	
4	7	
5	9	
6	12	
7	14	
8	15	
Total:	75	

How I can achieve better:
1.

$$
\mathrm{f}(z) \equiv z^{3}-5 z^{2}+17 z-13
$$

(a) Show that $(z-1)$ is a factor of $\mathrm{f}(z)$.
(b) Hence find all the roots of the equation $\mathrm{f}(z)=0$, giving your answers in the form $a+\mathbf{i} b$ where a and b are integers.
2. Find the general solution of the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=\frac{\mathrm{e}^{x}}{x^{2}},
$$

giving your answer in the form $y=\mathrm{f}(x)$.
3. (a) Express $\frac{1}{r(r+1)}$ in partial fractions.
(b) Hence, or otherwise, find

$$
\sum_{r=3}^{35} \frac{1}{r(r+1)}
$$

giving your answer as a fraction in its lowest terms.
4. Find the set of values of x for which

$$
\frac{(x+3)^{2}}{x+1}<2
$$

5. (a) Sketch the curve with polar equation

$$
r=a \cos (3 \theta), \quad a>0, \quad \text { for } \quad 0 \leq \theta \leq \pi
$$

(b) Show that the total area enclosed by the curve $r=a \cos (3 \theta)$ is $\frac{\pi a^{2}}{4}$.
6. Figure shows the curves $y=2 \cos (x)$ and $y=\mathrm{e}^{x}$ in the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.

Given that $\mathrm{f}(x) \equiv \mathrm{e}^{x}-2 \cos (x)$,
(a) write down the number of solutions of the equation $\mathrm{f}(x)=0$ in the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
(b) Show that the equation $\mathrm{f}(x)=0$ has a solution, α, in the interval $[0,1]$.
(c) Using 0.5 as a first approximation to α, use the Newton-Raphson process once to find an improved estimate for α, giving your answer correct to 2 decimal places.
(d) Show that the estimate of α obtained in part (c) is accurate to 2 decimal places.

There is another root, β, of the equation $\mathrm{f}(x)=0$ in the interval $[-2,-1]$.
(e) Use linear interpolation once on this interval to estimate the value of β, giving your answer correct to 2 decimal places.
7. The complex numbers z and w are such that

$$
z=\frac{A}{1-i} \quad \text { and } \quad w=\frac{B}{2+i},
$$

where A and B are real.
Given that $z+w=6$,
(a) find A and B.
z and w are represented by the points P and Q respectively on an Argand diagram.
(b) Show P and Q on the same Argand diagram.
(c) Find the distance $P Q$ in the form $a \sqrt{5}$.
8. (a) Find the values of p and q such that

$$
x=p \cos (t)+q \sin (t)
$$

satisfies the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} x}{\mathrm{~d} t}+3 x=\sin (t)
$$

(b) Hence find the solution of this differential equation for which $x=1$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=12$ at $t=0$.

