Solomon Practice Paper

Pure Mathematics 4A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	6	
4	7	
5	9	
6	12	
7	14	
8	15	
Total:	75	

How I can achieve better:

- •
- •
- •

Last updated: May 5, 2023

1.

 $f(z) \equiv z^3 - 5z^2 + 17z - 13.$

- (a) Show that (z-1) is a factor of f(z).
- (b) Hence find all the roots of the equation f(z) = 0, giving your answers in the form a + ib [5] where a and b are integers.

Total: 6

[1]

[6]

[4]

Total: 6

[3]

2. Find the general solution of the differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y = \frac{\mathrm{e}^x}{x^2}$$

giving your answer in the form y = f(x).

- 3. (a) Express $\frac{1}{r(r+1)}$ in partial fractions. [2]
 - (b) Hence, or otherwise, find

$$\sum_{r=3}^{35} \frac{1}{r(r+1)}$$

giving your answer as a fraction in its lowest terms.

4. Find the set of values of x for which

$$\frac{(x+3)^2}{x+1} < 2.$$
 [7]

5. (a) Sketch the curve with polar equation

 $r = a\cos(3\theta), \quad a > 0, \quad \text{for} \quad 0 \le \theta \le \pi.$

- (b) Show that the total area enclosed by the curve $r = a\cos(3\theta)$ is $\frac{\pi a^2}{4}$. [6] Total: 9
- 6. Figure shows the curves $y = 2\cos(x)$ and $y = e^x$ in the interval $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.

www.CasperYC.club

Last updated: May 5, 2023

Given that $f(x) \equiv e^x - 2\cos(x)$,

- (a) write down the number of solutions of the equation f(x) = 0 in the interval $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. [1]
- (b) Show that the equation f(x) = 0 has a solution, α , in the interval [0, 1].
- (c) Using 0.5 as a first approximation to α , use the Newton-Raphson process once to find an [4] improved estimate for α , giving your answer correct to 2 decimal places.
- (d) Show that the estimate of α obtained in part (c) is accurate to 2 decimal places.

There is another root, β , of the equation f(x) = 0 in the interval [-2, -1].

(e) Use linear interpolation once on this interval to estimate the value of β , giving your answer [3] correct to 2 decimal places.

Total: 12

[6]

[5]

[3]

[6]

Total: 14

[2]

[2]

7. The complex numbers z and w are such that

$$z = \frac{A}{1-i}$$
 and $w = \frac{B}{2+i}$

where A and B are real.

Given that z + w = 6,

(a) find A and B.

z and w are represented by the points P and Q respectively on an Argand diagram.

(b) Show P and Q on the same Argand diagram.

- (c) Find the distance PQ in the form $a\sqrt{5}$.
- 8. (a) Find the values of p and q such that

$$x = p\cos(t) + q\sin(t)$$

satisfies the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4\frac{\mathrm{d}x}{\mathrm{d}t} + 3x = \sin(t).$$

(b) Hence find the solution of this differential equation for which x = 1 and $\frac{dx}{dt} = 12$ at t = 0. [9] Total: 15

Last updated: May 5, 2023