Solomon Practice Paper

Pure Mathematics 3L
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	7	
4	8	
5	9	
6	12	
7	13	
8	15	
Total:	75	

How I can achieve better:

1. A circle has the equation

$$
4 x^{2}+4 y^{2}-4 x+24 y+1=0
$$

Find
(a) the coordinates of the centre of the circle,
(b) the radius of the circle.
2. Find, in the form $a x+b y+c=0$, the equation of the normal to the curve

$$
y=(x+3)^{2} \mathrm{e}^{-x}
$$

at the point with coordinates $(0,9)$.
3.

$$
\mathrm{f}(x) \equiv x^{3}+(a+3) x^{2}-a^{3} .
$$

Given that when $\mathrm{f}(x)$ is divided by $(x+2)$ the remainder is 4 ,
(a) find the three possible values of a.

Given also that $a>0$,
(b) find the remainder when $\mathrm{f}(x)$ is divided by $(2 x+3)$.
4. Relative to a fixed origin, O, the points A, B and C have position vectors $(5 \mathbf{i}+\mathbf{j}-11 \mathbf{k}),(-3 \mathbf{i}+$ $5 \mathbf{j}-3 \mathbf{k})$ and $(11 \mathbf{i}+\mathbf{j}+4 \mathbf{k})$ respectively.
(a) Find an equation of the line that passes through A and B in the form $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$.

The point M is the midpoint of $A B$.
(b) Show that $\overrightarrow{C M}$ is perpendicular to $\overrightarrow{A B}$.
5.

$$
\mathrm{f}(x) \equiv(1+8 x)^{\frac{1}{2}},|x|<\frac{1}{8}
$$

(a) Express $\mathrm{f}(x)$ as a series in ascending powers of x up to and including the term in x^{3}.
(b) Show that $\sqrt{1.08}=\frac{3}{5} \sqrt{3}$.
(c) Hence, use your series with a suitable value of x to estimate the value of $\sqrt{3}$ correct to 6 significant figures.

Total: 9
6. (a) Given that

$$
\frac{5}{(y-3)(2 y-1)} \equiv \frac{A}{y-3}+\frac{B}{2 y-1},
$$

find the values of A and B.
(b) Given that $\frac{1}{2}<y<3$, for all values of x, find the general solution to the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{5}(y-3)(2 y-1) .
$$

(c) Given also that $y=1$ when $x=\ln (2)$, show that

$$
y=\frac{3+\mathrm{e}^{x}}{2 \mathrm{e}^{x}+1} .
$$

7.

$$
\mathrm{f}: x \mapsto \cos (2 x)+\sin (x), \quad 0 \leq x \leq 2 \pi
$$

(a) Find the values of x for which $\mathrm{f}(x)=0$.
(b) Find the values of x for which $\mathrm{f}^{\prime}(x)=0$.
(c) Sketch the curve $y=\mathrm{f}(x)$.
8. Figure shows the curve given by the parametric equations

$$
x=2 \cos (t), \quad \text { and } \quad y=\sin ^{3}(t), \quad 0 \leq t \leq 2 \pi
$$

where t is a parameter.

(a) Find the coordinates of the points A and B with parameters $t=0$ and $t=\frac{\pi}{2}$ respectively.
(b) Show that the area of the region enclosed by the curve is given by the integral

$$
\int_{0}^{\frac{\pi}{2}} 8 \sin ^{4}(t) \mathrm{d} t
$$

(c) Use the double angle identities to prove that

$$
\sin ^{4}(A)=\frac{1}{8}(3-4 \cos (2 A)+\cos (4 A)) .
$$

(d) Find the area of the region enclosed by the curve, giving your answer in terms of π. \square

