Solomon Practice Paper

Pure Mathematics 3J
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	5	
3	8	
4	10	
5	10	
6	12	
7	12	
8	13	
Total:	75	

How I can achieve better:

1. Given that

$$
\frac{x^{2}+9 x-10}{(x-2)^{2}(x+1)} \equiv \frac{A}{(x-2)^{2}}+\frac{B}{x-2}+\frac{C}{x+1},
$$

find the values of A, B and C.
2. Show that

$$
\int_{2}^{4} x\left(x^{2}-4\right)^{\frac{1}{2}} \mathrm{~d} x=8 \sqrt{3} .
$$

3. (a) Find the binomial expansion of $(1+4 x)^{\frac{1}{4}}$ for $|x|<\frac{1}{4}$ in ascending powers of x as far as the term in x^{3}.
(b) By substituting $x=0.01$ into your expansion, find the fourth root of 16.64 correct to 6 decimal places.
4. (a) Use the identity

$$
\cot (x) \equiv \frac{\cos (x)}{\sin (x)}
$$

to show that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \cot (x)=-\csc ^{2}(x)
$$

(b) Use integration by parts to find

$$
\int x \csc ^{2}(x) \mathrm{d} x .
$$

Total: 10
5. At time t the vectors \mathbf{r} and \mathbf{s} are given by

$$
\begin{aligned}
& \mathbf{r}=2 t^{2} \mathbf{i}-t \mathbf{j}+\mathbf{k} \\
& \mathbf{s}=(t+2) \mathbf{i}+\left(t^{2}+5\right) \mathbf{j}+\left(1-t^{3}\right) \mathbf{k}
\end{aligned}
$$

(a) Find the angle between \mathbf{r} and \mathbf{s} when $t=2$, giving your answer in degrees correct to 1 decimal place.
(b) Find the values of t for which \mathbf{r} and \mathbf{s} are perpendicular.
6. Figure shows the circle C with equation $x^{2}+y^{2}+10 x-16 y+85=0$ and the line l with equation $2 x-3 y+8=0$.

(a) Find an equation of the line which is perpendicular to line l and passes through the centre of circle C.
(b) Hence, or otherwise, find the minimum distance between l and C.
7. A physics student is investigating the change in the size of an air bubble as it rises in water. The student believes that the volume, $V \mathrm{~m}^{3}$ of a bubble is related to its depth, $h \mathrm{~m}$, by the formula

$$
V=\frac{k}{h+10}
$$

where k is a constant.
A bubble of volume $0.1 \mathrm{~m}^{3}$ is formed at a depth of 5 m in a water tank. Using the student's model,
(a) find the volume of the bubble when it has risen 3 m , (hint: $h=5-3=2$)
(b) show that, at this instant, V is increasing at the rate of $\frac{1}{96} \mathrm{~m}^{3}$ per metre the bubble rises.

Assuming that the bubble is spherical as it rises,
(c) find, correct to 2 significant figures, the rate at which the radius of the bubble is increasing per metre the bubble rises at the instant when it has risen 3 m .
8. (a) By taking logarithms, prove that if $x=3^{1-t}$, then

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-(\ln (3)) 3^{1-t}
$$

A curve has parametric equations

$$
x=3^{1-t} \quad \text { and } \quad y=9^{t}-1
$$

(b) Show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(-2) \cdot 3^{3 t-1}
$$

(c) Find an equation of the tangent to the curve at the point $(3,0)$.
(d) Find a Cartesian equation for the curve.

