Solomon Practice Paper

Pure Mathematics 3G

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	8	
3	8	
4	9	
5	10	
6	10	
7	12	
8	13	
Total:	75	

How I can achieve better:

- •
- •
- •

Last updated: May 5, 2023

1. Given that

show that

2. (a) Find

(b) Given that y = 1 when x = 1, solve the differential equation

$$\left(x^2+3\right)\frac{\mathrm{d}y}{\mathrm{d}x} = xy,$$

 $\int \frac{x}{x^2 + 3} \, \mathrm{d}x.$

 $y = 2\mathrm{e}^x(x-1),$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{xy}{x-1}.$

giving your answer in the form $y^2 = f(x)$.

3.

 $f(x) \equiv x^3 - x^2 - 8x + 14.$

When f(x) is divided by (x - a) the remainder is 2.

By forming and factorising a cubic equation, find all possible values of a.

4. A curve has the equation

$$\cos(2x)\tan(y) = 1.$$

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan(2x)\sin(2y).$$

The curve is stationary at the point with coordinates $\left(0, \frac{\pi}{4}\right)$.

(b) By evaluating $\frac{d^2y}{dx^2}$ at this stationary point, determine its nature. [5] Total: 9

5. (a) Expand $(1+x)^{-1}$, |x| < 1, in ascending powers of x as far as the term in x^3 .

(b) Find the values of A, B and C for which

$$\frac{1-3x}{(x^2+1)(x+1)} \equiv \frac{Ax+B}{x^2+1} + \frac{C}{x+1}$$

(c) Hence, find the series expansion of

$$\frac{1 - 3x}{(x^2 + 1)(x + 1)}$$

as far as the term in x^3 and state the set of values of x for which it is valid.

www.CasperYC.club

Last updated: May 5, 2023

[5]

[3]

[5]

[8]

[4]

[2]

[3]

[5]

6. The circle C has the equation

 $x^2 + y^2 + 2x - 8y + 15 = 0.$

(a) Find the coordinates of the centre of C and write down its radius.	[4]
P is the point with coordinates $(6,3)$.	
(b) Find the minimum distance of P from C .	[3]
T is a point on C such that the line PT is a tangent to C .	
(c) Find the length of the line PT in the form $k\sqrt{3}$.	[3]
	Total: 10
7. The lines l and m have the vector equations	

 $\label{eq:constraint} \begin{array}{rcl} l & : & \mathbf{r} = 12\mathbf{i} - 9\mathbf{j} + 8\mathbf{k} + \lambda(14\mathbf{i} - 5\mathbf{j} + 2\mathbf{k}), \\ m & : & \mathbf{r} = 4\mathbf{i} + 8\mathbf{j} - 6\mathbf{k} + \mu(a\mathbf{i} + b\mathbf{j} - 4\mathbf{k}), \end{array}$

where λ and μ are parameters and a and b are constants.

Given that l and m are perpendicular,

(a) find an equation connecting a and b.

Given also that m passes through the z-axis,

- (b) show that a = 2 and find the value of b,
- (c) show that the lines l and m intersect and find the coordinates of their point of intersection. [5]

Total: 12

[2]

[5]

8. Figure shows the curve with equation $y = 4x^2 e^{-2x}$.

The curve is stationary at the origin, O, and at the point A.

www.CasperYC.club

Last updated: May 5, 2023

(a) Find the coordinates of point A.

The shaded region is bounded by the curve, the x-axis, and the line $x = \frac{1}{2}$.

(b) Show that the area of the shaded region is $\left(1 - \frac{5}{2}e^{-1}\right)$. [9] Total: 13

www.CasperYC.club