Solomon Practice Paper Pure Mathematics 3G

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	8	
3	8	
4	9	
5	10	
6	10	
7	12	
8	13	
Total:	75	

How I can achieve better:

1. Given that

$$
y=2 \mathrm{e}^{x}(x-1)
$$

show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x y}{x-1}
$$

2. (a) Find

$$
\int \frac{x}{x^{2}+3} \mathrm{~d} x
$$

(b) Given that $y=1$ when $x=1$, solve the differential equation

$$
\left(x^{2}+3\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=x y
$$

giving your answer in the form $y^{2}=\mathrm{f}(x)$.
3.

$$
\mathrm{f}(x) \equiv x^{3}-x^{2}-8 x+14
$$

When $\mathrm{f}(x)$ is divided by $(x-a)$ the remainder is 2 .
By forming and factorising a cubic equation, find all possible values of a.
4. A curve has the equation

$$
\cos (2 x) \tan (y)=1
$$

(a) Show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\tan (2 x) \sin (2 y) .
$$

The curve is stationary at the point with coordinates $\left(0, \frac{\pi}{4}\right)$.
(b) By evaluating $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at this stationary point, determine its nature.
5. (a) Expand $(1+x)^{-1},|x|<1$, in ascending powers of x as far as the term in x^{3}.

$$
\frac{1-3 x}{\left(x^{2}+1\right)(x+1)} \equiv \frac{A x+B}{x^{2}+1}+\frac{C}{x+1} .
$$

(c) Hence, find the series expansion of

$$
\frac{1-3 x}{\left(x^{2}+1\right)(x+1)}
$$

as far as the term in x^{3} and state the set of values of x for which it is valid.
6. The circle C has the equation

$$
x^{2}+y^{2}+2 x-8 y+15=0 .
$$

(a) Find the coordinates of the centre of C and write down its radius.
P is the point with coordinates $(6,3)$.
(b) Find the minimum distance of P from C.
T is a point on C such that the line $P T$ is a tangent to C.
(c) Find the length of the line $P T$ in the form $k \sqrt{3}$.
7. The lines l and m have the vector equations

$$
\begin{aligned}
l & : \mathbf{r}=12 \mathbf{i}-9 \mathbf{j}+8 \mathbf{k}+\lambda(14 \mathbf{i}-5 \mathbf{j}+2 \mathbf{k}), \\
m & : \mathbf{r}=4 \mathbf{i}+8 \mathbf{j}-6 \mathbf{k}+\mu(a \mathbf{i}+b \mathbf{j}-4 \mathbf{k}),
\end{aligned}
$$

where λ and μ are parameters and a and b are constants.
Given that l and m are perpendicular,
(a) find an equation connecting a and b.

Given also that m passes through the z-axis,
(b) show that $a=2$ and find the value of b,
(c) show that the lines l and m intersect and find the coordinates of their point of intersection.
8. Figure shows the curve with equation $y=4 x^{2} \mathrm{e}^{-2 x}$.

The curve is stationary at the origin, O, and at the point A.
(a) Find the coordinates of point A.

The shaded region is bounded by the curve, the x-axis, and the line $x=\frac{1}{2}$.
(b) Show that the area of the shaded region is $\left(1-\frac{5}{2} \mathrm{e}^{-1}\right)$.

