Solomon Practice Paper

Pure Mathematics 3D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	7	
3	8	
4	8	
5	10	
6	10	
7	13	
8	16	
Total:	77	

How I can achieve better:

- •
- •
- •

Last updated: May 5, 2023

1. A curve is given by the parametric equations

$$x = 1 + t^2$$
, and $y = 2t^6$.

- (a) Find an equation of the curve in Cartesian form.
- (b) Sketch the curve, labelling the coordinates of any points where the curve meets the coordinate [3] nate axes.
 - Total: 5

[2]

2. The lines l_1 and l_2 are given by

$$l_1 : \mathbf{r} = -38 + 8 + \mathbf{k} + \lambda(5\mathbf{i} - 7\mathbf{j} + 4\mathbf{k}) l_2 : \frac{x-5}{2} = \frac{y+9}{3} + \frac{z-3}{6}.$$

- (a) Find an equation for l_2 in vector form.
- (b) Find the size of the acute angle between lines l_1 and l_2 in degrees correct to 1 decimal place. [4]

[3]

[4]

3. (a) Use integration by parts to find

 $\int 2x \ln(x) \,\mathrm{d}x.$ [4]

(b) Given that y = 2e when x = e, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x\ln(x)}{y}.$$

Total: 8

4. A curve has the equation

 $4\cos(x) + \tan(y) = 0.$

- (a) Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = 4\sin(x)\cos^2(y).$ [3]
- (b) Find the equation of the normal to the curve at the point with coordinates $(\frac{\pi}{2}, \frac{\pi}{6})$ in the [5] form ax + by + c = 0.

Total: 8

5. (a) Given that |x| < 1, express $(1+x)^{-1}$ as a series in ascending powers of x, as far as the term [3] in x^3 .

(b)

$$f(x) \equiv \frac{4x+1}{(1-2x)(1+x)}.$$
[7]

By expressing f(x) in partial fractions, find the series expansion of f(x) in ascending powers of x as far as the term in x^3 and state the set of values of x for which your series is valid

www.CasperYC.club

Last updated: May 5, 2023

(b) Using the substitution $u = x^2 + 4$, or otherwise, evaluate

$$\int_0^2 \frac{5x}{(x^2+4)^2} \,\mathrm{d}x.$$

Total: 10

7. Figure shows three circles, C_1, C_2 and C_3 which all touch the x-axis.

(a) Find the coordinates of the centre of C_1 and write down its radius.

Circle C_2 has the same radius as C_1 and is touching circle C_1 .

(b) Find an equation of circle C_2 .

Circle C_3 is touching both circles C_1 and C_2 .

- (c) Find an equation of circle C_3 .
- 8. (a) A curve has the equation

$$y = \frac{x}{\sqrt{x-2}}, \quad x > 2.$$

Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x-4}{2(x-2)^{\frac{3}{2}}}$$

(d) Hence, determine the nature of the stationary point on the curve.

www.CasperYC.club

Last updated: May 5, 2023

Total: 16

[3]

[5]

[5]

[5]

Total: 13

[3]

[7]

Total: 10