Solomon Practice Paper

Pure Mathematics 3D
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	7	
3	8	
4	8	
5	10	
6	10	
7	13	
8	16	
Total:	77	

How I can achieve better:

1. A curve is given by the parametric equations

$$
x=1+t^{2}, \quad \text { and } \quad y=2 t^{6} .
$$

(a) Find an equation of the curve in Cartesian form.
(b) Sketch the curve, labelling the coordinates of any points where the curve meets the coordinate axes.
2. The lines l_{1} and l_{2} are given by

$$
\begin{aligned}
& l_{1}: \mathbf{r}=-38+8+\mathbf{k}+\lambda(5 \mathbf{i}-7 \mathbf{j}+4 \mathbf{k}) \\
& l_{2}: \\
& \hline
\end{aligned}
$$

(a) Find an equation for l_{2} in vector form.
(b) Find the size of the acute angle between lines l_{1} and l_{2} in degrees correct to 1 decimal place.
3. (a) Use integration by parts to find

$$
\int 2 x \ln (x) \mathrm{d} x
$$

(b) Given that $y=2 \mathrm{e}$ when $x=\mathrm{e}$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x \ln (x)}{y}
$$

4. A curve has the equation

$$
4 \cos (x)+\tan (y)=0
$$

(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 \sin (x) \cos ^{2}(y)$.
(b) Find the equation of the normal to the curve at the point with coordinates $\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$ in the form $a x+b y+c=0$.
5. (a) Given that $|x|<1$, express $(1+x)^{-1}$ as a series in ascending powers of x, as far as the term in x^{3}.
(b)

$$
\mathrm{f}(x) \equiv \frac{4 x+1}{(1-2 x)(1+x)}
$$

By expressing $\mathrm{f}(x)$ in partial fractions, find the series expansion of $\mathrm{f}(x)$ in ascending powers of x as far as the term in x^{3} and state the set of values of x for which your series is valid
6. (a) Find $\int \tan ^{2}(3 x) \mathrm{d} x$.
(b) Using the substitution $u=x^{2}+4$, or otherwise, evaluate

$$
\int_{0}^{2} \frac{5 x}{\left(x^{2}+4\right)^{2}} \mathrm{~d} x
$$

7. Figure shows three circles, C_{1}, C_{2} and C_{3} which all touch the x-axis.

Circle C_{1} has the equation $x^{2}+y^{2}-12 x-8 y+36=0$.
(a) Find the coordinates of the centre of C_{1} and write down its radius.

Circle C_{2} has the same radius as C_{1} and is touching circle C_{1}.
(b) Find an equation of circle C_{2}.

Circle C_{3} is touching both circles C_{1} and C_{2}.
(c) Find an equation of circle C_{3}.
8. (a) A curve has the equation

$$
y=\frac{x}{\sqrt{x-2}}, \quad x>2 .
$$

Show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-4}{2(x-2)^{\frac{3}{2}}}
$$

(b) Find the coordinates of the stationary point on the curve.
(c) Find and simplify an expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(d) Hence, determine the nature of the stationary point on the curve.

