Solomon Practice Paper
Pure Mathematics 3A
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	8	
5	9	
6	11	
7	13	
8	13	
Total:	75	

How I can achieve better:

1. A curve has the equation $y=x^{2} \mathrm{e}^{3 x}$.
(a) Find and simplify an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Find the coordinates of any stationary points on the curve.
2.

$$
\mathrm{f}(x) \equiv x^{3}+a x+2
$$

Given that the remainder when $\mathrm{f}(x)$ is divided by $(x+2)$ is the same as the remainder when $\mathrm{f}(x)$ is divided by $(x-3)$,
(a) find the value of a,
(b) find as an exact fraction the remainder when $\mathrm{f}(x)$ is divided by $(2 x-5)$.
3. (a) Expand $(1+2 x)^{\frac{1}{2}}$ in ascending powers of x as far as the term in x^{3}, simplifying each coefficient.
(b) State the set of values of x for which your series is valid.
(c) Use your series with a suitable value of x to estimate the value of $\sqrt{1.02}$ correct to 6 significant figures.
4.

$$
\mathrm{f}(x) \equiv \frac{5}{(3 x-2)(x+1)}
$$

(a) Express $\mathrm{f}(x)$ in the form

$$
\frac{A}{3 x-2}+\frac{B}{x+1} .
$$

(b) Show that

$$
\int_{2}^{4} \mathrm{f}(x) \mathrm{d} x=\ln \left(\frac{3}{2}\right) .
$$

5. The circle C has the equation

$$
x^{2}+y^{2}-4 x-10 y+20=0 .
$$

(a) Find the coordinates of the centre of C and write down its radius.
(b) Find an equation for the smallest circle that touches both the circle C and the x-axis.
6. A curve has the equation

$$
2 x^{2} y-6 y+x^{3}=2
$$

(a) Show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}+4 x y}{6-2 x^{2}}
$$

The point A with coordinates $(2, k)$ lies on the curve.
(b) Find the value of k.
(c) Show that the normal to the curve at A has the equation

$$
x+6 y+16=0 .
$$

7. (a) Using the substitution $u=\sin (x)$, or otherwise, find

$$
\int \cos (x) \sin ^{2}(x) \mathrm{d} x .
$$

(b) Hence, find

$$
\int \cos ^{3}(x) \mathrm{d} x
$$

(c) Given that $y=\frac{\pi}{4}$ when $x=\frac{\pi}{6}$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\cos ^{2}(y) \cos ^{3}(x)
$$

Total: 13
8. Relative to a fixed origin, O, the points A and B have position vectors $(7 \mathbf{i}-7 \mathbf{j}+5 \mathbf{k})$ and $(\mathbf{i}-6 \mathbf{j}+12 \mathbf{k})$ respectively.
(a) Find, in vector form, an equation of the line l which passes through A and B.

Given that the point C has position vector $(-3 \mathbf{i}+12 \mathbf{j}+10 \mathbf{k})$ and that M is the mid-point of $B C$,
(b) find the position vector of the point M.

Given also that $A B M D$ is a rhombus,
(c) show that the position vector of the point D is $(5 \mathbf{i}+2 \mathbf{j}+4 \mathbf{k})$,
(d) find the area of $A B M D$ in the form $k \sqrt{2}$ where k is an integer.

