Solomon Practice Paper
Pure Mathematics 2L
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	7	
4	9	
5	9	
6	12	
7	12	
8	15	
Total:	75	

How I can achieve better:

1. (a) Sketch the following graphs on separate diagrams, labelling the coordinates of any points where each graph meets the coordinate axes.
i. $y=|x+1|$.
ii. $y=|x|+1$.
(b) Hence, write down the set of values of x for which

$$
|x|+1>|x+1| .
$$

2. (a) Prove by counter-example that $a>b$ does not imply that $(a+1)^{2}>(b+1)^{2}$ for all integers a and b.
(b) Use proof by contradiction to show that $(4 n-3)$ is odd for all positive integers n.
3. (a) Expand $\left(1+\frac{1}{4} x\right)^{8}$ in ascending powers of x as far as the term in x^{3}, simplifying the coefficient in each term.
(b) Use your series to estimate the value of $\left(\frac{41}{40}\right)^{8}$, correct to 4 significant figures.
4. (a) Show that for all values of x, where x is measured in degrees,

$$
\cos \left(x+60^{\circ}\right)-\sqrt{3} \sin \left(x-60^{\circ}\right) \equiv 2 \cos (x)-\sqrt{3} \sin (x)
$$

(b) Hence, find the values of x in the interval $-180^{\circ} \leq x \leq 180^{\circ}$, for which

$$
\cos \left(x+60^{\circ}\right)-\sqrt{3} \sin \left(x-60^{\circ}\right)=0
$$

giving your answers to an appropriate degree of accuracy.
5.

$$
\mathrm{f}(x) \equiv 2-\frac{3}{x}, \quad x \in \mathbb{R}, \quad x \neq 0
$$

(a) Find and simplify an expression for $\mathrm{ff}(x)$ and state its domain.
(b) Show that $\operatorname{fff}(x)=\frac{4 x+3}{6-x}$.
6. Figure shows the curve with equation $y=2-3 x^{\frac{1}{2}}$.

The curve meets the x-axis at the point A and the y-axis at the point B.
(a) Find the coordinates of the points A and B.

The shaded region, R, is bounded by the curve and the positive coordinate axes.
(b) Show that the volume generated when R is rotated through 360° about the x-axis is $\frac{8}{27} \pi$.
(c) State, with a reason, whether the volume generated when R is rotated through 360° about the y-axis is more, less or the same as your answer to part (b).
7.

$$
\mathrm{f}(x) \equiv \arccos (x), \quad x \in \mathbb{R}, \quad|x| \leq 1
$$

(a) State the exact value of x for which $\mathrm{f}(x)=\frac{3}{4} \pi$.
(b) Sketch the curve $y=\mathrm{f}(x)$ and state its range.
(c) Use the trapezium rule with 3 equally spaced ordinates to estimate the area enclosed by the curve $y=\mathrm{f}(x)$ and the positive coordinate axes. Give your answer in the form $k \pi$ where k is an exact fraction.
(d) Explain, with reference to the curve's symmetry, why the total area enclosed by the curve,

Total: 12
8. Figure shows the curve $y=\mathrm{f}(x)$ where $\mathrm{f}(x) \equiv \ln (5 x)-2 x^{2}, x>0$.

(a) Show that the maximum value of $\mathrm{f}(x)$ is $\ln \left(\frac{5}{2}\right)-\frac{1}{2}$.

The point A lies on the curve and has x-coordinate $\frac{1}{5}$.
(b) Show that the equation of the tangent to the curve at A is $105 x-25 y-23=0$.
(c) Show that that the equation $\mathrm{f}(x)=0$ can be rearranged to give $x=\frac{1}{4}\left(\mathrm{e}^{2 x^{2}}-x\right)$.
(d) Use the iteration formula

$$
x_{n+1}=\frac{1}{4}\left(\mathrm{e}^{2 x_{n}^{2}}-x\right)
$$

with $x_{0}=0.25$ to find x_{1}, x_{2} and x_{3}.
Hence, write down one root of the equation $\mathrm{f}(x)=0$ correct to an appropriate degree of accuracy.

