Solomon Practice Paper
Pure Mathematics 2K
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	9	
5	9	
6	11	
7	11	
8	14	
Total:	75	

How I can achieve better:

1. Find, to an appropriate degree of accuracy, the values of x and y for which
(a) $3^{x}=11$,
(b) $\log _{2}(2 y-1)=4$.
2. A sequence is defined as follows:

$$
u_{n+1}=3 u_{n}+2, \quad n \geq 1, \quad u_{1}=k .
$$

(a) Find expressions in terms of k for u_{2} and u_{3}.

Given that $\sum_{r=1}^{4} u_{r}=16$,
(b) find the value of k.
3. Figure shows part of the curve with equation $y=\frac{(1+x)^{3}}{3 x}$.

(a) Express $(1+x)^{3}$ as a series in ascending powers of x.
(b) Show that the area of the shaded region enclosed by the curve, the ordinates $x=1$ and
$x=3$, and the x-axis is given by $\frac{1}{9}(3 \ln (3)+80)$.
4. The function f is given by

$$
\mathrm{f}: x \mapsto \frac{2}{x-3}, \quad x \in \mathbb{R}, \quad x \neq 3
$$

(a) Define $\mathrm{f}^{-1}(x)$, stating its domain clearly.

The function g is given by

$$
\mathrm{g}: x \mapsto x^{2}-6 x+1, \quad x \in \mathbb{R}, \quad x \geq k
$$

(b) Given that $\mathrm{g}^{-1}(x)$ exists, find the minimum value of k.
5. Figure shows part of the curve with equation $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x) \equiv 2 \mathrm{e}^{x}-\ln (x), \quad x \in \mathbb{R}, \quad x>0 .
$$

(a) Find $\mathrm{f}^{\prime}(x)$.
A is the stationary point on the curve.
(b) Show that the x-coordinate of A lies in the interval $(0.3,0.4)$.

The point B lies on the curve and its x-coordinate is 1 .
(c) Show that the equation of the tangent to the curve at B is

$$
y=(2 \mathrm{e}-1) x+1
$$

6. Given that

$$
p=\frac{3 x-4}{x+1} \quad \text { and } \quad q=\frac{x^{2}-6 x}{x^{2}-1}
$$

(a) show that $p-2 q=\frac{x+4}{x-1}$,
(b) find and simplify an expression for $\frac{p}{q}$ in terms of x,
(c) find the value or values of x for which $\frac{p}{q}=0$.
7. (a) Prove that for all values of x

$$
\cos ^{2}(x)-\sin ^{2}(2 x) \equiv \cos ^{2}(x)\left(4 \cos ^{2}(x)-3\right)
$$

(b) Hence find the values of x in the interval $0 \leq x \leq 2 \pi$, for which

$$
\cos ^{2}(x)-\sin ^{2}(2 x)=0
$$

giving your answers in terms of π.
8. (a) By sketching the graphs $y=(x-3)^{2}$ and $y=\sqrt{x}$ on the same diagram, show that the equation $(x-3)^{2}=\sqrt{x}$ has exactly two positive roots.
(b) Show that one root of the equation, α, lies in the interval $1<\alpha<2$, and find the value of N such that

$$
\frac{N}{10}<\alpha<\frac{N+1}{10}
$$

(c) Using an iteration of the form

$$
x_{n+1}=x_{n}^{\frac{1}{4}}+k
$$

with a starting value of $x_{1}=4$, find the other root of the equation, β, correct to 3 significant figures.

