Solomon Practice Paper

Pure Mathematics 2K

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	9	
5	9	
6	11	
7	11	
8	14	
Total:	75	

How I can achieve better:

- •
- •
- •

Last updated: May 5, 2023

- 1. Find, to an appropriate degree of accuracy, the values of x and y for which
 - (a) $3^x = 11,$ [3] (b) $\log_2(2y - 1) = 4.$ [3]
- 2. A sequence is defined as follows:

$$u_{n+1} = 3u_n + 2, \quad n \ge 1, \quad u_1 = k.$$

(a) Find expressions in terms of k for u_2 and u_3 .

Given that
$$\sum_{r=1}^{4} u_r = 16$$
,

- (b) find the value of k.
- 3. Figure shows part of the curve with equation $y = \frac{(1+x)^3}{3x}$.

- (a) Express $(1+x)^3$ as a series in ascending powers of x.
- (b) Show that the area of the shaded region enclosed by the curve, the ordinates x = 1 and [6] x = 3, and the x-axis is given by $\frac{1}{9}(3\ln(3) + 80)$.

Total: 8

[2]

 $\left[5\right]$

4. The function f is given by

$$f: x \mapsto \frac{2}{x-3}, \quad x \in \mathbb{R}, \quad x \neq 3.$$

(a) Define $f^{-1}(x)$, stating its domain clearly.

The function g is given by

g:
$$x \mapsto x^2 - 6x + 1$$
, $x \in \mathbb{R}$, $x \ge k$.

(b) Given that $g^{-1}(x)$ exists, find the minimum value of k.

www.CasperYC.club

Last updated: May 5, 2023

Total: 6

[3]

[4]

Total: 7

Page 2 of 3

- 5. Figure shows part of the curve with equation y = f(x) where
 - $f(x) \equiv 2e^x \ln(x), \quad x \in \mathbb{R}, \quad x > 0.$

(a) Find f'(x).

A is the stationary point on the curve.

(b) Show that the x-coordinate of A lies in the interval (0.3, 0.4). [3]

The point B lies on the curve and its x-coordinate is 1.

(c) Show that the equation of the tangent to the curve at B is

$$y = (2\mathrm{e} - 1)x + 1.$$

Total: 9

[2]

[4]

6. Given that

 $p = \frac{3x - 4}{x + 1}$ and $q = \frac{x^2 - 6x}{x^2 - 1}$,

(a) show that $p - 2q = \frac{x+4}{x-1}$, [6]

(b) find and simplify an expression for
$$\frac{p}{q}$$
 in terms of x , [3]

- (c) find the value or values of x for which $\frac{p}{q} = 0.$ [2]
- 7. (a) Prove that for all values of x

$$\cos^2(x) - \sin^2(2x) \equiv \cos^2(x)(4\cos^2(x) - 3).$$

(b) Hence find the values of x in the interval $0 \le x \le 2\pi$, for which

$$\cos^2(x) - \sin^2(2x) = 0,$$

www.CasperYC.club

Last updated: May 5, 2023

Total: 11

[6]

[5]

giving your answers in terms of π .

8. (a) By sketching the graphs $y = (x - 3)^2$ and $y = \sqrt{x}$ on the same diagram, show that the equation $(x - 3)^2 = \sqrt{x}$ has exactly two positive roots.

(b) Show that one root of the equation, α , lies in the interval $1 < \alpha < 2$, and find the value of [5] N such that

$$\frac{N}{10} < \alpha < \frac{N+1}{10}.$$

 $x_{n+1} = x_n^{\frac{1}{4}} + k,$

(c) Using an iteration of the form

with a starting value of
$$x_1 = 4$$
, find the other root of the equation, β , correct to 3 significant figures.

Total: 14

Total: 11

[4]

[5]