Solomon Practice Paper Pure Mathematics 2J

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	4	
2	8	
3	8	
4	10	
5	11	
6	11	
7	11	
8	12	
Total:	75	

How I can achieve better:

1. Given that $y=3 \mathrm{e}^{x}+2 \ln (x)$, find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
2. (a) By letting $p=\log _{a}(x)$ and $q=\log _{a}(y)$, or otherwise, prove that

$$
\log _{a}(x y) \equiv \log _{a}(x)+\log _{a}(y) .
$$

(b) Find integers A and B such that

$$
\ln (48)+\ln (108)=A \ln (2)+B \ln (3)
$$

Total:
3. (a) Express $\left(x^{\frac{1}{2}}-2 x^{-\frac{3}{2}}\right)^{2}$ in the form $p x+q x^{-1}+r x^{-3}$.
(b) Show that

$$
\int_{2}^{4}\left(x^{\frac{1}{2}}-2 x^{-\frac{3}{2}}\right)^{2} \mathrm{~d} x=\frac{51}{8}-4 \ln (2) .
$$

Total:
4. (a) Find the values of θ in the interval $0 \leq \theta \leq 2 \pi$, for which

$$
2 \tan ^{2}(\theta)+\sec ^{2}(\theta)=2,
$$

giving your answers in terms of π.
(b) Find the values of x in the interval $0 \leq x \leq 180^{\circ}$, for which

$$
\sin (3 x)=\sin (2 x)
$$

Total: 10
5. Given that $a>0$,
(a) sketch on the same set of coordinate axes the graphs of $y=\frac{1}{2}(x+a)$ and $y=|2 x-a|$,
labelling the coordinates of any points where each graph meets the coordinate axes,
(b) find, in terms of a, the coordinates of any points where the two graphs intersect.
6. (a) Expand $(4+2 x)^{5}$ as a series in ascending powers of x, simplifying each coefficient.

Hence, find
(b) the coefficient of y^{4} in the expansion of $\left(4+\frac{1}{5} y\right)^{5}$ as an exact fraction,
(c) the coefficient of z^{6} in the expansion of $(2+\sqrt{2} z)^{5}(2-\sqrt{2} z)^{5}$.
7.

$$
\mathrm{f}(x) \equiv x^{4}-5 x+3
$$

(a) Show that one root of the equation $\mathrm{f}(x)=0$ lies in the interval $(0.6,0.7)$.
(b) Using the iteration formula

$$
x_{n+1}=0.2\left(x_{n}^{4}+3\right),
$$

with a starting value of $x_{1}=0.65$, find this root correct to 3 significant figures.
(c) Show that the equation $\mathrm{f}(x)=0$ can be rewritten as

$$
x= \pm \sqrt{\frac{a x+b}{x^{2}}}
$$

where a and b are integers to be found.
(d) Hence, use the iteration formula

$$
x_{n+1}= \pm \sqrt{\frac{a_{n} x+b}{x_{n}^{2}}}
$$

together with your values of a and b and with $x_{1}=1.5$ to find x_{2}, x_{3} and x_{4} correct to 6 significant figures.
(e) Considering only your values of x_{2}, x_{3} and x_{4}, explain why it is reasonable to give a second root of the equation as 1.43 correct to 3 significant figures.
8. Figure shows the straight line l and the curve $y=\mathrm{f}(x)$.

The line and curve intersect at the points $P(1, \ln (2))$ and $Q(3, \ln (8))$.
(a) Find in its simplest form the equation of the line l.

Given that $\mathrm{f}(x) \equiv \ln (a x+b)$,
(b) find the values of a and b,
(c) hence, find an expression for $\mathrm{f}^{-1}(x)$.

