Solomon Practice Paper

Pure Mathematics 2I

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	5	
3	9	
4	9	
5	11	
6	11	
7	12	
8	13	
Total:	75	

How I can achieve better:

1. Express

$$
\frac{2}{x-2}+\frac{3 x}{x^{2}-4}-\frac{5}{x+2}
$$

as a single fraction in its simplest form.
2. (a) Find

$$
\int \mathrm{e}^{x}+2 x+1 \mathrm{~d} x
$$

(b) Evaluate

$$
\int_{0}^{2} \mathrm{e}^{x}+2 x+1 \mathrm{~d} x
$$

giving your answer in terms of e.
3. Figure shows part of the curve $y=\mathrm{f}(x)$ which meets the x-axis at the origin, O, and at the point with coordinates $(4,0)$. The curve has a maximum point with coordinates $(2,3)$.

Showing the coordinates of any turning points and any points where each curve meets the x-axis, sketch on separate diagrams graphs of
(a) $y=|\mathbf{f}(x)|$,
(b) $y=\mathrm{f}\left(\frac{1}{2} x\right)$,
(c) $y=\mathrm{f}(|x|)$.
4. Figure shows part of the curve $y=\mathrm{e}^{3 x}-1$.

(a) Write the equation of the curve in the form $x=\mathrm{f}(y)$.

The shaded region is enclosed by the curve, the y-axis and the line $y=3$.
(b) Show that using the trapezium rule with 3 intervals of equal width gives an estimate of $\frac{1}{3}(2 \ln (2)+\ln (3))$ for the area of the shaded region.
5. A sequence is defined by the following recurrence relation:

$$
u_{n+1}=\frac{2}{u_{n}}-k, \quad n \geq 1, \quad u_{1}=\frac{1}{2} .
$$

(a) Find expressions in terms of k for u_{2} and u_{3}.

Given that $u_{3}=7 u_{2}$,
(b) find the two possible values of k.

Given also that k is an integer,
(c) show that $u_{4}=-\frac{37}{7}$.
6. (a) Find the values of R and α, where x is measured in degrees, $R>0$, and $0<\alpha<90^{\circ}$, for which

$$
\cos (x)-\sqrt{3} \sin (x) \equiv R \cos (x+\alpha)
$$

(b) Hence, find the values of x in the interval $0 \leq x \leq 360^{\circ}$, for which

$$
\cos (x)-\sqrt{3} \sin (x) \equiv 2 \cos \left(x+30^{\circ}\right)
$$

7. The functions f and g are defined by

$$
\begin{array}{lll}
\mathrm{f}: x & \mapsto x^{2}-4, & x \in \mathbb{R}, \\
\mathrm{~g}: x & \mapsto 2 x+1, & x \in \mathbb{R} .
\end{array}
$$

(a) State the range of f.
(b) Define fg as simply as possible.
(c) Solve the equation $\operatorname{fg}(x)=0$.
(d) Prove that there are no real values of x for which $\operatorname{fg}(x)=\operatorname{gf}(x)$.
8. Figure shows the curve with equation $y=\mathrm{e}^{x}-3 x$

which meets the y-axis at the point A.
(a) Find an equation of the normal to the curve at A.

The point B lies on the curve and has coordinates $(\ln (5), 5-3 \ln (5))$.
(b) Find an equation of the normal to the curve at B.

The normals to the curve at A and B intersect at the point C.
(c) Show that the x-coordinate of C is $\left(4-\frac{5}{2} \ln (5)\right)$.

