Solomon Practice Paper

Pure Mathematics 2H

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	7	
4	9	
5	10	
6	12	
7	12	
8	13	
Total:	75	

How I can achieve better:

1. Find, to an appropriate degree of accuracy, the values of x and y for which
(a) $5^{x}=10$,
(b) $\log _{2}\left(4^{2 y}\right)=\log _{3}\left(27^{y+1}\right)$.
2. Use the trapezium rule with 5 equally spaced ordinates to estimate the value of

$$
\int_{-2}^{2} \mathrm{e}^{\frac{1}{2} x+1} \mathrm{~d} x
$$

giving your answer correct to 3 significant figures.
3. (a)

$$
\mathrm{f}(x) \equiv 4 x^{2}-4 x+3, \quad x \in \mathbb{R}
$$

Prove that $|\mathrm{f}(x)|=\mathrm{f}(x)$ for all values of x.
(b)

$$
\mathrm{g}(x) \equiv x^{2}+6 x+4, \quad x \in \mathbb{R}
$$

Prove that there are no real solutions to the equation $\mathrm{g}(|x|)=0$.
4. (a) Figure shows the curve $y=\mathrm{f}(x)$ which has a minimum point with coordinates $(-6,-2)$.

The curve meets the coordinate axes at the points $(-9,0),(-3,0)$ and $(0,6)$.

Showing the coordinates of any turning points and any points where each curve meets the coordinate axes, sketch on separate diagrams graphs of
i. $y=\mathrm{f}(x-3)$,
ii. $y=2+\frac{1}{2} \mathrm{f}(x)$.
(b) Figure shows the curve $y=g(2 x)$ which meets the coordinate axes at the points with coordinates $(3,0)$ and $(0,2)$.

Showing the coordinates of any points where the curve meets the coordinate axes, sketch the graph $y=\mathrm{g}(x)$.
5. (a) Expand $(1+4 x)^{6}$ in ascending powers of x as far as the term in x^{3}, simplifying the coefficient in each term.
(b) Use your series to estimate the value of $(1.04)^{6}$ correct to 4 significant figures.
(c) Find the coefficient of x^{2} in the expansion of $(2+x)(1+4 x)^{6}$.
6. Figure shows part of the curve with equation $y=2 x+3 \ln (x)$.

The curve crosses the x-axis at the point P with coordinates $(p, 0)$.
(a) Show that $0.5<p<1$.
(b) Using the iteration

$$
x_{n+1}=\sqrt{\frac{x_{n}^{\frac{1}{2}}}{\mathrm{e}^{x_{n}}}}
$$

and $x_{1}=0.5$, find the value of x_{4} correct to 3 significant figures.
(c) Show that your answer to part (b) gives the value of p correct to 3 significant figures.

The point Q with coordinates $(1,2)$ lies on the curve.
(d) Find an equation of the tangent to the curve at Q.
7. The function f is given by

$$
\mathrm{f}: x \mapsto 2 \cos (x)+\sin (x), \quad x \in \mathbb{R}
$$

Given that $\mathrm{f}(x)$ can be written as $R \cos (x-\alpha)$, where x is measured in degrees, $R>0$ and $0 \leq \alpha \leq 90^{\circ}$,
(a) show that $R=\sqrt{5}$ and find the value of α correct to 1 decimal place,
(b) state the range of $\mathrm{f}(x)$.

The function g is given by

$$
\mathrm{g}: x \mapsto \frac{8}{3+x}, \quad x \in \mathbb{R}, \quad x \neq-3 .
$$

(c) Find the range of $\operatorname{gf}(x)$, giving the minimum and maximum values in the form $a+b \sqrt{5}$.
8. Figure shows the curve $y=x^{2}+1$ and the line $y=4-2 x$.

A is the point of intersection of the curve and line with a positive x-coordinate.
(a) Show that the point A has coordinates $(1,2)$.

The shaded region, R, is enclosed by the curve, the line and the positive coordinate axes.
(b) Show that the volume of the solid generated when R is rotated through 2π radians about the x-axis is $\frac{16}{5} \pi$.

