Solomon Practice Paper Pure Mathematics 2G

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	7	
3	8	
4	8	
5	8	
6	10	
7	13	
8	16	
Total:	75	

How I can achieve better:

1. The terms of a sequence satisfy the following recurrence relation:

$$
u_{n+1}=\frac{u_{n}-1}{2}, \quad n \geq 1 .
$$

Given that $u_{4}=\frac{1}{4}$, find the value of
(a) u_{5},
(b) u_{1}.
2. (a) Show that the equation

$$
1+\cos (x)=2 x^{2}-1
$$

can be rearranged into the form

$$
x= \pm \sqrt{a+b \cos (x)}
$$

and state the values of a and b.
(b) Use the iteration formula

$$
x_{n+1}= \pm \sqrt{a+b \cos \left(x_{n}\right)}
$$

with your values of a and b and with $x_{0}=1$ to find a root of the equation correct to 2 decimal places.
(c) Without further calculation write down another root of the equation and explain your answer.
3. (a) Find the coordinates of the points where the curve $y=4-x^{2}$ crosses the x-axis.
(b) The region bounded by the curve $y=4-x^{2}$ and the x-axis is rotated through 360° about the x-axis. Show that the volume of the solid generated is $\frac{512}{15} \pi$.

Total:
4. A bicycle tyre develops a slow puncture.

The pressure, P pounds per square inch, in the tyre t minutes after the puncture occurs is given by

$$
P=14+50 \mathrm{e}^{-k t} .
$$

(a) Find the pressure in the tyre when the puncture occurs.

Given that the pressure in the tyre is halved during the first 5 minutes after the puncture occurs, find correct to 3 significant figures
(b) the value of the constant k,
(c) the pressure in the tyre 12 minutes after the puncture occurs.
5. The functions f and g are defined by

$$
\begin{array}{lll}
\mathrm{f}: x & \mapsto 3 x^{2}-1, & x \in \mathbb{R}, \\
\mathrm{~g}: x & \mapsto \mathrm{e}^{3 x}, & x \in \mathbb{R} .
\end{array}
$$

(a) Solve the equation $\mathrm{f}(x)=26$.
(b) Evaluate $\operatorname{gf}(0.8)$ correct to 3 significant figures.
(c) Define $\operatorname{fg}(x)$ as simply as possible.
6. (a) Simplify
i. $\frac{x^{2}+3 x}{x^{2}+5 x+6}$,
ii. $\frac{2 x^{2}-x-1}{x^{2}+8 x-9}$.
(b) Hence solve the equation

$$
\frac{x^{2}+3 x}{x^{2}+5 x+6}=\frac{2 x^{2}-x-1}{x^{2}+8 x-9},
$$

giving your answers in the form $a+b \sqrt{2}$.
7. (a) Prove that there are no real values of θ for which

$$
\cos (2 \theta)+\cos (\theta)+2=0 .
$$

(b) Find the values of x in the interval $0 \leq x \leq 360^{\circ}$, for which

$$
3 \sin (x)-2 \cos ^{2}(x)=0
$$

(c) Hence, find the values of y in the interval $0 \leq y \leq 180^{\circ}$, for which

$$
3 \sec (2 y)-2 \cot (2 y)=0 .
$$

8. Figure shows the curve $y=\mathrm{f}(x)$ where $\mathrm{f}(x) \equiv \frac{(2+x)^{3}}{x^{2}}$.

(a) Express $(2+x)^{3}$ as a series in ascending powers of x.
(b) Hence, express $\mathrm{f}(x)$ in the form $A x^{-2}+B x^{-1}+C+D x$.

The curve intersects the x-axis at the point P.
(c) Find the coordinates of P.
(d) Show that $\mathrm{f}(x)$ is stationary at P.
(e) Hence, find the coordinates of the other stationary point on the curve, Q.

