Solomon Practice Paper
Pure Mathematics 2E
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	7	
4	9	
5	9	
6	11	
7	12	
8	14	
Total:	75	

How I can achieve better:

1. Given that

$$
\frac{1}{x+2}=\frac{3 x}{y-4}-\frac{3 x+5}{x+2},
$$

express y in terms of x as simply as possible.
2. (a) Given that $y=3^{x}$, express $3^{2 x+1}$ as a function of y.
(b) Hence, or otherwise, find correct to 3 significant figures the values of x for which

$$
3^{2 x+1}-14\left(3^{x}\right)+8=0
$$

3. Evaluate

$$
\int_{1}^{9} \frac{3-4 \sqrt{x}}{2 x} \mathrm{~d} x
$$

giving your answer in the form $a+b \ln (3)$, where a and b are integers.
4. (a) Given that

$$
(1+k \sqrt{3})^{4} \equiv A+B \sqrt{3},
$$

show that $A=\left(1+18 k^{2}+9 k^{4}\right)$ and find an expression for B in terms of k.
(b) Hence, find the value of k for which

$$
(1+k \sqrt{3})^{4} \equiv 217-104 \sqrt{3}
$$

5. The function f is an even function defined for all real values of x.

Given that

$$
\mathrm{f}(x) \equiv 3 x^{\frac{1}{2}}, \quad x \geq 0
$$

sketch each of the following curves on separate diagrams. Your sketches should show the coordinates of any points where each curve meets the coordinate axes.
(a) $y=\mathrm{f}(x)$,
(b) $y=2 \mathrm{f}(x+1)$,
(c) $y=2-\mathrm{f}(x)$.
6. (a) Using the identities

$$
\cos (A+B) \equiv \cos (A) \cos (B)-\sin (A) \sin (B),
$$

and

$$
\cos (A-B) \equiv \cos (A) \cos (B)+\sin (A) \sin (B)
$$

prove the identity

$$
\cos (A)+\cos (B) \equiv 2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) .
$$

(b) Find in terms of π the values of θ in the interval $0 \leq \theta \leq \pi$ for which

$$
\cos (5 \theta)+\cos (\theta)=\cos (3 \theta)
$$

Total: 11
7. Figure shows part of the curve with equation $y=5 x-\mathrm{e}^{x}$.

(a) Find in exact form the coordinates of P, the stationary point on the curve.

The curve meets the y-axis at the point Q.
(b) Find an equation of the tangent to the curve at Q.

The shaded region is enclosed by the curve, the x-axis and the ordinates $x=1$ and $x=2$.
(c) Show that the area of the shaded region is $\left(\frac{15}{2}+\mathrm{e}-\mathrm{e}^{2}\right)$.
8. Figure shows the curves with equations $y=(x-2)^{2}$ and $y=1+\sin (x)$ where x is measured in radians.

(a) i. State, with a reason, how many solutions there will be to the equation $(x-2)^{2}=$ $1+\sin (x)$.
ii. Show that one solution to the equation lies in the interval $[0.5,1]$.
(b) Using the iteration

$$
x_{n+1}=\frac{1}{4}\left(x_{n}^{2}+3-\sin \left(x_{n}\right)\right)
$$

with a starting value of $x_{1}=0.75$, find x_{4} correct to 3 significant figures.
(c) Show that your answer to part (b) is correct to 3 significant figures as a solution to the equation $(x-2)^{2}=1+\sin (x)$.
(d) Using an iteration of the form

$$
x_{n+1}=a+\frac{\sin \left(x_{n}\right)-b}{x_{n}},
$$

with a starting value of $x_{1}=3$, find another solution of the equation $(x-2)^{2}=1+\sin (x)$ correct to 3 significant figures.

