Solomon Practice Paper Pure Mathematics 2D

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	8	
4	8	
5	10	
6	11	
7	12	
8	15	
Total:	75	

How I can achieve better:

1. The function f is defined by

$$
\mathrm{f}(x) \equiv \log _{3}(x), \quad x \in \mathbb{R}, \quad x>0
$$

(a) Evaluate f(27).
(b) Solve the equation $\mathrm{f}\left(3^{x+4}\right)=2 x$.
2. A sequence is defined by the recurrence relation

$$
u_{n+1}=4+\frac{1}{2} u_{n}, \quad n \geq 1, \quad u_{1}=72 .
$$

(a) Find the value of u_{4}.
(b) Using the fact that $u_{10}=\frac{65}{8}$, find the value of u_{9} as an exact fraction.
3. Figure shows part of the curve with equation $y=2 x-5+2 x^{-1}$, for $x>0$.

The curve crosses the x-axis at the points A and B.
(a) Find the coordinates of the points A and B.
(b) Show that the mathematical area of the shaded region enclosed by the curve and the x-axis is given by $\frac{1}{4}(16 \ln (2)-15)$.
4. (a) Prove by counter-example that $\left(3^{n}+2\right)$ is not prime for all positive integers n.
(b) Use proof by contradiction to show that there are no integers p and q, such that $\frac{p}{q}=\sqrt{2}$, where p and q are co-prime.

$$
\text { wiete } p \text { antu } q \text { ate }
$$

5. Figure shows the curve $y=2+\sec (x)$ for x in the interval $[0,2 \pi]$.

The curve meets the x-axis at the points A and B.
(a) Find the coordinates of the points A and B.

The shaded region is enclosed by the curve and the x-axis between the points A and B.
(b) Show that estimating the area of the shaded region using the trapezium rule with 5 equally spaced ordinates gives a value of $\frac{1}{18} \pi(15-4 \sqrt{3})$.
6.

$$
\mathrm{f}(x) \equiv 3 x^{2}-18 x+5, \quad x \in \mathbb{R}, \quad x>4
$$

(a) Express $\mathrm{f}(x)$ in the form $A(x+B)^{2}+C$.
(b) Find the range of $\mathrm{f}(x)$.
(c) Define $\mathrm{f}^{-1}(x)$, stating its domain clearly.
7. (a) Using the half-angle formulae, or otherwise, prove that for all values of x

$$
\frac{1+\cos (x)}{1-\cos (x)} \equiv \cot ^{2}\left(\frac{x}{2}\right) .
$$

(b) Hence, find the values of x in the interval $0 \leq x \leq 2 \pi$ for which

$$
\frac{1+\cos (x)}{1-\cos (x)}=6 \csc \left(\frac{x}{2}\right)-10
$$

giving your answers correct to an appropriate degree of accuracy.
8. Figure shows part of the curve with equation $y=\frac{1}{2} \mathrm{e}^{x}+2$ which passes through the point A with coordinates $(\ln (4), 4)$.

(a) Show that the equation of the tangent to the curve at A is $y=2 x+4-4 \ln (2)$.

The tangent to the curve at A meets the x-axis at the point B.
(b) Find the coordinates of the point B.

The normal to the curve at A meets the x-axis at the point C.
(c) Find the coordinates of the point C.
(d) Show that the area of triangle $A B C$ is 20 .

