Solomon Practice Paper
Pure Mathematics 2C
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	6	
4	8	
5	10	
6	12	
7	13	
8	14	
Total:	75	

How I can achieve better:

1. (a) Solve the equation

$$
\ln (2 x+1)=3
$$

giving your answer in terms of e.
(b) Given that

$$
2^{x}=5^{y},
$$

show that $y=k x$ where k is a constant that you should find correct to an appropriate degree of accuracy.
2. (a) Use the identity

$$
\sin (A+B) \equiv \sin (A) \cos (B)+\cos (A) \sin (B)
$$

to prove that

$$
\sin (2 A) \equiv 2 \sin (A) \cos (A)
$$

(b) Hence, or otherwise, use the fact that

$$
\sin \left(15^{\circ}\right)=\frac{\sqrt{6}-\sqrt{2}}{4}
$$

to find the value of $\cos \left(15^{\circ}\right)$ in exact form with a rational denominator.
3. Express

$$
\frac{5 x^{2}-11 x+9}{x^{2}+3 x-10}+\frac{3-2 x}{x-2}
$$

as a single fraction in its simplest form.
4. The coefficient of x^{2} in the expansion of $(1+3 x)^{n}$ is 252 .

Given that n is a positive integer,
(a) find the value of n,
(b) show that the coefficient of x^{3} is 1512 .
5. Figure shows the curve $x=y^{2}-5 y+4$.

(a) Express x^{2} in descending powers of y.
(b) Find $\int x^{2} \mathrm{~d} y$.
(c) Show that the volume generated when the shaded region, bounded by the curve and the
positive coordinate axes, is rotated through 2π radians about the y-axis is $\frac{47 \pi}{10}$.
6. The functions f and g are defined by

$$
\begin{array}{lll}
\mathrm{f}: x \mapsto & x^{2}-2, & x \in \mathbb{R}, \\
\mathrm{~g}: x \mapsto & \mathrm{e}^{\frac{3}{2} x} & x \in \mathbb{R} .
\end{array}
$$

(a) State the range of g.
(b) Define fg as simply as possible.
(c) Find, correct to 2 decimal places, the value of x for which $\operatorname{fg}(x)=5$.
(d) Show that the only value of x for which $g(x)=\mathrm{fg}(x)$ is $\frac{2}{3} \ln (2)$.
7. (a) Prove that

$$
\cot ^{2}(x)-\tan ^{2}(x) \equiv 4 \cot (2 x) \csc (2 x)
$$

(b) Hence, find in terms of π the values of x in the interval $0 \leq x \leq \pi$ for which

$$
\cot ^{2}(x)-\tan ^{2}(x)=8 \cot (2 x) .
$$

8. Figure shows part of the curve with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x) \equiv x-3 \ln (2 x), \quad x \in \mathbb{R}, \quad x>0
$$

The curve crosses the x-axis at the points A and B.
(a) Show that the x-coordinate of the point A lies in the interval $(0.6,0.7)$.
(b) Find the value of N such that the x-coordinate of the point B lies in the interval $(N, N+1)$.

The line $y=x$ meets the curve at the point C.
(c) Find the coordinates of the point C.
(d) Show that the equation of the tangent to the curve at C is $y=3-5 x$.

