Solomon Practice Paper Pure Mathematics 2B

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	9	
5	10	
6	10	
7	11	
8	14	
Total:	75	

How I can achieve better:

1. (a) Sketch the graph of $y=|3 x+2|$ showing the coordinates of any points where the graph meets the coordinate axes.
(b) Solve the equation $|3 x+2|=2-x$
2. (a) Prove using the laws of indices that for all values of x

$$
\log _{a}\left(x^{k}\right) \equiv k \log _{a}(x)
$$

(b) Express

$$
\ln (9)-3 \ln \sqrt{3}+\ln (81)
$$

in the form $k \ln (3)$, where k is an exact fraction.
3. Figure shows the curve $y=5 \cos (x)-2 \sin (x)$ for $0 \leq x \leq 360^{\circ}$.

(a) Find the values of R and α, correct to 3 significant figures, for which

$$
5 \cos (x)-2 \sin (x) \equiv R \cos (x+\alpha)
$$

where x is measured in degrees and $0<\alpha<90^{\circ}$.
(b) Find the coordinates of
i. the point A, where the curve meets the y-axis,
ii. the point B, the first minimum on the curve for $x>0$.
4. Figure shows part of the curve $y=k x^{\frac{1}{2}}-x^{-\frac{1}{2}}$.

Given that the point with coordinates $\left(3, \frac{5}{3} \sqrt{3}\right)$ lies on the curve,
(a) show that $k=2$.

The shaded region, R, is bounded by the curve, the x-axis and the ordinates $x=1$ and $x=5$.
(b) Find the volume generated when R is rotated through 360° about the x-axis, giving your answer in the form $\pi(a+b \ln (5))$.
5. The function f is given by

$$
\mathrm{f}: x \mapsto \frac{x}{x+3}, \quad x \in \mathbb{R}, \quad x \neq-3 .
$$

(a) Define $\mathrm{f}^{-1}(x)$, stating its domain clearly.

The function g is given by

$$
\mathrm{g}: x \mapsto \frac{4}{x}, \quad x \in \mathbb{R}, \quad x \neq 0
$$

(b) Express $\mathrm{fg}(\sqrt{2})$ in the form $a+b \sqrt{2}$, where a and b are integers.
6. A sequence is defined as follows

$$
u_{n+1}=k u_{n}-2, \quad n \geq 1, \quad u_{1}=3
$$

(a) Find expressions in terms of k for u_{2} and u_{3}.

Given that $u_{2}+u_{3}=0$,
(b) show that one possible value of k is 1 and find the other possible value,
(c) find the value of u_{4} corresponding to each possible value of k.
7. Figure shows part of the curve with equation $y=\mathrm{e}^{x}-2 x-4$.

(a) Find in exact form the coordinates of the turning point of the curve.

The curve intersects the x-axis at the points $A(a, 0)$ and $B(b, 0)$ where $a<b$.
(b) Show that $-2<a<-1$.
(c) Use an iteration of the form

$$
x_{n+1}=\ln \left(p x_{n}+q\right)
$$

with a starting value of $x_{0}=2$ to find b correct to 3 significant figures.
8.

$$
\mathrm{f}(x) \equiv 2 x^{2}+4 x+\ln (x), \quad x \in \mathbb{R}, \quad x>0
$$

(a) Sketch the curves $y=4 x+2 x^{2}$ and $y=-\ln (x)$, for $x>0$, on the same diagram. Hence show that the equation $\mathrm{f}(x)=0$ has exactly one solution.
(b) Express $\mathrm{f}^{\prime}(x)$ in the form

$$
\frac{(a x+b)^{2}}{x}
$$

and hence prove that $\mathrm{f}(x)$ is increasing throughout its domain.
(c) Find $\mathrm{f}^{\prime \prime}(x)$ and hence find the set of values of x for which the gradient of $\mathrm{f}(x)$ is increasing.

