Solomon Practice Paper
Pure Mathematics 2A
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	7	
3	7	
4	8	
5	10	
6	11	
7	12	
8	15	
Total:	75	

How I can achieve better:

1. By letting $y=2^{x}$, or otherwise, solve the equation

$$
2^{2 x}-2^{x}-6=0
$$

giving any answers correct to 3 significant figures.
2. (a) Expand $(1-3 x)^{6}$ in ascending powers of x as far as the term in x^{3}, simplifying the coefficient in each term.
(b) Using your series, together with a suitable value of x which you should state, estimate the value of $(0.997)^{6}$ correct to 6 significant figures.
3. (a) Show that $(x+2)$ is a factor of $\left(x^{3}-2 x^{2}-5 x+6\right)$.
(b) Hence, simplify the expression

$$
\frac{x^{3}-2 x^{2}-5 x+6}{2 x^{2}-5 x-3}
$$

4. Figure shows part of the curve $y=\mathrm{f}(x)$ which passes through the origin, O.

The curve has a maximum point with coordinates $(3,6)$ and a minimum point with coordinates $(6,2)$.

Showing the coordinates of any stationary points, sketch on separate diagrams the curves
(a) $y=\mathrm{f}(x+3)$,
(b) $y=\mathrm{f}(2 x)$,
(c) $y=\mathrm{f}(|x|)$.
5.

$$
\mathrm{f}(x) \equiv 1+\frac{3}{x}, \quad x \in \mathbb{R}, \quad x \neq 0
$$

(a) Show that $\mathrm{ff}(x)=\frac{4 x+3}{x+3}$.
(b) Prove that the equation $\mathrm{f}(x)=k x+2 k$ will only have real solutions if $4 k^{2}+8 k+1 \geq 0$.
(c) Prove by counter-example that the equation $\mathrm{f}(x)=k x+2 k$ does not have real solutions for all values of k.
6. (a) Prove that for all values of x

$$
2 \tan (x)-\sin (2 x) \equiv 2 \sin ^{2}(x) \tan (x) .
$$

(b) Hence find the values of x in the interval $0 \leq x \leq 360^{\circ}$, for which

$$
2 \tan (x)-\sin (2 x)=\sin ^{2}(x)
$$

giving your answers to an appropriate degree of accuracy.
7. Figure shows part of the curve with equation $y=2 \mathrm{e}^{x}-1$.

The shaded region, R, is enclosed by the curve, the positive coordinate axes and the ordinate $x=3$.
(a) Use the trapezium rule with 4 equally spaced ordinates to estimate the area of R, giving your answer in terms of e.
(b) Use integration to show that the exact area of R is $2 \mathrm{e}^{3}-5$.
(c) Find correct to 2 significant figures the percentage error in your estimate in part (a).
8. Figure shows part of the curve $y=\ln (x)+5-3 x, x>0$, and the normal to the curve at the point A.

The x-coordinate of the point A is 1 .
(a) Find the equation of the normal to the curve at A in the form $a x+b y+c=0$.
(b) Show that the x-coordinate of the point B, where the normal again intersects the curve is given by a solution of the equation $2 \ln (x)+7-7 x=0$.
(c) Using an iteration of the form

$$
x_{n+1}=\mathrm{e}^{k\left(x_{n}-1\right)},
$$

with a starting value of $x_{1}=0.1$, find the x-coordinate of the point B giving your answer correct to 3 decimal places.

