Solomon Practice Paper

Pure Mathematics 1J

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	7	
2	7	
3	8	
4	8	
5	9	
6	9	
7	11	
8	16	
Total:	75	

How I can achieve better:

1. Figure shows a sector $O A B$ of a circle, centre O and radius 12 cm .

Given that the perimeter of the sector $O A B$ is 32 cm , find
(a) the size of $\angle A O B$ in radians as an exact fraction,
(b) the area of the shaded segment in cm^{2}, giving your answer correct to 3 significant figures.
2. (a) Find $\int(3 x-1)^{2} \mathrm{~d} x$.

Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=(3 x-1)^{2}$ and that when $x=-1, y=2$,
(b) find y in terms of x.
3. (a) Prove from first principles that the sum of the first n natural numbers,

$$
1+2+3+4+\ldots+n
$$

is given by

$$
\frac{1}{2} n(n+1)
$$

(b) Hence evaluate the sum of the integers between -30 and 72 inclusive.
4. A is the point $(8,0)$ and B is the point $(12,6)$.
(a) Find an equation of the line passing through the points A and B.
M and N are the midpoints of $O A$ and $O B$ respectively, where O is the origin.
(b) Calculate the area of the trapezium $A B N M$.
5. (a) Given that $y=2^{x}$, show that
i. $4^{x}=y^{2}$
ii. $2^{x+2}=4 y$
(b) By using your answers to part (a), or otherwise, solve the equation

$$
4^{x}-2^{x+2}-32=0
$$

6. (a) Show that the solutions of the equation

$$
5 \tan (\theta)-6 \cos (\theta)=0
$$

will be given by the values of θ for which

$$
6 \sin ^{2}(\theta)+5 \sin (\theta)-6=0
$$

(b) Hence solve the equation

$$
5 \tan (\theta)-6 \cos (\theta)=0
$$

for θ in the interval $0 \leq \theta \leq 2 \pi$, giving your answers correct to 2 decimal places.
7. Figure shows a design consisting of four identical circles of radius r,

which are shaded, arranged such that their centres are at the four corners of a square of side $2 r$. A larger circle of radius R circumscribes the four smaller circles.
(a) Show that $R=(1+\sqrt{2}) r$.
(b) Hence show that the ratio of the total area of the four shaded circles to the area of the larger circle is equal to $(12-8 \sqrt{2}): 1$.

Total: 11
8. Figure shows part of the curve

$$
y=x^{2}+\frac{8}{x}
$$

which crosses the x-axis at the point A.
(a) Find the coordinates of the point A.

The line l is the normal to the curve at the point A.
(b) Find an equation of the line l.
(c) Show that the line l will intersect the curve where

$$
6 x^{3}-x^{2}-2 x+48=0
$$

(d) Hence prove that l does not cross the curve other than at A.

