Solomon Practice Paper

Pure Mathematics 1I

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	6	
4	7	
5	9	
6	10	
7	16	
8	16	
Total:	75	

How I can achieve better:

1. Figure shows part of the curve $y=m \cos (x-n)$, where x is measured in degrees.

The constants m and n are integers and n is such that $0<n<90^{\circ}$.
For $x>0$, the curve first crosses the x-axis at the point $A(120,0)$ and the first minimum is at the point $B(210,-4)$.
(a) Find the values of m and n.

The curve above may also be written in the form $y=p \sin (x+q)$, where p and q are integers and $0<q<90^{\circ}$.
(b) Write down the values of p and q.
2.

$$
\mathrm{f}(x) \equiv x^{3}-5 x^{2}+3 x+2
$$

(a) Find $\mathrm{f}^{\prime}(x)$.
(b) Hence, or otherwise, find the set of values of x for which $\mathrm{f}(x)$ is decreasing.
3. Given that $\sin \left(15^{\circ}\right)$ is exactly

$$
\frac{\sqrt{3}-1}{2 \sqrt{2}}
$$

show that $\cos ^{2}\left(15^{\circ}\right)$ can be written as

$$
\frac{m+n \sqrt{3}}{4}
$$

where m and n are positive integers.
4.

$$
\mathrm{f}(x) \equiv x^{2}-2 x-6
$$

(a) By expressing $\mathrm{f}(x)$ in the form $A(x+B)^{2}+C$, prove that $\mathrm{f}(x) \geq-7$.
(b) Solve the equation $\mathrm{f}(x)=0$, giving your answers correct to 2 decimal places.
5.

$$
y^{\frac{1}{2}}=2 x^{\frac{1}{3}}+1 .
$$

(a) Show that y can be written in the form

$$
y=A x^{\frac{2}{3}}+B x^{\frac{1}{3}}+C
$$

where A, B and C are positive integers.
(b) Hence, evaluate

$$
\int_{1}^{8} y \mathrm{~d} x
$$

6. The first two terms of a geometric series are $(x+2)$ and $\left(x^{3}+2 x^{2}-x-2\right)$ respectively.
(a) Find the common ratio of the series as a quadratic expression in terms of x.
(b) Express the second term of the series as a product of 3 linear factors.

Given that $x=\frac{1}{2}$,
(c) show that the sum to infinity of the series is $\frac{10}{7}$.
7. Figure shows the inside of a running track.

The track consists of two straight sections of length l metres, joined at either end by semicircles of diameter h metres.
(a) Find, in terms of h and l, expressions for
i. the perimeter of the track,
ii. the area of the track.

Given that the track must have a perimeter of 400 metres,
(b) show that the area, $A \mathrm{~m}^{2}$, enclosed by the track is given by

$$
A=200 h-\frac{\pi h^{2}}{4} .
$$

In order to stage the field events, A must be as large as possible. Given that h can vary,
(c) find the maximum value of A, giving your answer in terms of π,
(d) justify that your value of A is a maximum.
8. Figure shows the sector $P Q R$ of a circle, centre P.

The tangents to the circle at Q and R meet at the point S.
The shape $P Q S R$ has $x=4$ as a line of symmetry.
Given that P and Q are the points with coordinates $(4,11)$ and $(1,5)$ respectively,
(a) find the gradient of the line $P Q$,
(b) find an equation of the tangent to the circle at Q,
(c) show that the radius of the circle can be written in the form $a \sqrt{5}$ where a is a positive integer which you should find,
(d) show that the angle subtended by the minor arc $Q R$ at P is 0.927 radians correct to 3 decimal places,
(e) find the area of the shaded region enclosed by the $\operatorname{arc} Q R$ and the lines $Q S$ and $R S$.

