Solomon Practice Paper Pure Mathematics 1E

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	7	
4	7	
5	9	
6	13	
7	13	
8	15	
Total:	75	

How I can achieve better:

1. A cylinder has base radius $(\sqrt{3}-1)$ metres and height $\left(\frac{1}{2+\sqrt{3}}\right)$ metres.

Show that the volume of the cylinder is given by $(14-8 \sqrt{3}) \pi \mathrm{m}^{3}$.
2.

$$
\mathrm{f}(x) \equiv x^{2}+2 k x+k+6 .
$$

(a) Prove that the equation $\mathrm{f}(x)=0$ has repeated roots if $k^{2}-k-6=0$.
(b) Hence, or otherwise, find the values of k for which $\mathrm{f}(x)$ is a perfect square.
3.

$$
y=2 x^{\frac{1}{3}}-3 x^{-\frac{1}{3}}
$$

Given that $u=x^{\frac{1}{3}}$,
(a) express y as a function of u.
(b) Hence, or otherwise, find the values of x for which $y=-5$.
4. (a) Sketch the curve $y=2 \sin (x / 2)-1$ for x in the interval $0 \leq x \leq 360^{\circ}$.
(b) Find the values of x for which $y=0$.
5.

$$
\mathrm{f}(x) \equiv x^{4}+5 x^{3}-26 x^{2}+12 x-3
$$

(a) Find $\mathrm{f}^{\prime}(x)$.
(b) Show that $\mathrm{f}^{\prime}(x)$ has a factor $(x-2)$.
(c) Express $\mathrm{f}^{\prime}(x)$ as a product of 3 linear factors.
6. Figure shows a grid used to help spectators estimate distances at an athletics meeting.

The grid consists of circular sectors, each with centre O and angle θ.
The radius of the smallest sector is 5 m and each of the other sectors has a radius 5 m more than the previous one.
(a) Show that the perimeter, in metres, of the shaded region, C, is $25 \theta+10$.
(b) Show that the perimeters of the regions A, B, C, D and E, are the terms of an arithmetic series.
(c) Find the ratio of the area of the shaded region, C, to the area of the smallest sector, A, in the form $k: 1$.
7. Figure shows part the graph of $y=(x-a)(x-2 a)$ which intersects the coordinate axes at P, Q, and R.

(a) Write down the coordinates of the points P, Q and R in terms of a.

Given that $a=2$,
(b) show that the equation of the tangent to the curve at the point R is $y=2 x-8$.

The normal to the curve at R meets the curve again at S.
(c) Find the x-coordinate of S.
8. Figure shows part of the curve $y=-x^{2}+6 x-6$ and the line $x+y=6$.

The curve crosses the line at the points M and N and cuts the x-axis at the points A and B.
(a) Find the x-coordinates of the points A and B, giving your answers correct to 2 decimal places.
(b) Find the coordinates of the points M and N.
(c) Calculate the area of the shaded region enclosed by the curve and the line $M N$.

