Solomon Practice Paper Pure Mathematics 1D

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	8	
3	8	
4	8	
5	8	
6	11	
7	13	
8	14	
Total:	75	

How I can achieve better:

1. (a) State the condition for which the equation $a x^{2}+b x+c=0$ will have real roots.

Given that $\mathrm{f}(x) \equiv x^{2}+2 p x+3 x+p^{2}$,
(b) prove that the equation $\mathrm{f}(x)=0$ will have real roots only if $p \geq-\frac{3}{4}$.
2. Figure shows a solid right-circular cone.

The height of the cone is 14.3 cm and the diameter of its base is 10.2 cm .
(a) Calculate the slant height of the cone, x, in centimetres correct to 1 decimal place.
(b) Show that the surface area of the cone is $325 \mathrm{~cm}^{2}$, correct to 3 significant figures.
3.

$$
\mathrm{f}(x) \equiv 3 x^{3}-7 x^{2}-22 x+8
$$

(a) Evaluate f(-2).
(b) Hence state one linear factor of $\mathrm{f}(x)$.
(c) Express $\mathrm{f}(x)$ as the product of three linear factors.
4. (a) Find

$$
\int 6 x^{2}-20 x+\frac{1}{\sqrt{x}} \mathrm{~d} x
$$

(b) Hence, evaluate

$$
\int_{4}^{5} 6 x^{2}-20 x+\frac{1}{\sqrt{x}} \mathrm{~d} x .
$$

giving your answer in the form $a+b \sqrt{5}$.
5. Figure shows the curve with equation $y=4 \cos (x)-1$, for x in the interval $0 \leq x \leq 2 \pi$.

(a) State the coordinates of the point A, where the curve crosses the y-axis, and the point B, the first minimum on the curve for $x>0$.
(b) Find the coordinates of the points C and D, where the curve crosses the x-axis in the interval $0 \leq x \leq 2 \pi$.
6. The first term of a geometric series is $8 \sqrt{3}$ and the second term is 12 .
(a) Show that the common ratio of the series is $\frac{\sqrt{3}}{2}$.
(b) Find the sixth term of the series.
(c) Show that the sum to infinity of the series can be written as $16(2 \sqrt{3}+3)$.
7.

$$
\mathrm{f}(x) \equiv(x-1)(x-a)
$$

(a) Sketch the curve $y=\mathrm{f}(x)$, indicating the coordinates of any points where the curve crosses
the coordinate axes in the cases for which
i. $a>1$,
ii. $a<0$.
(b) Show that the coordinates of the turning point of the curve $y=\mathrm{f}(x)$ can be written as:

$$
\left(\frac{a+1}{2}, \frac{-(a-1)^{2}}{4}\right) .
$$

(c) Hence state the set of values for which $\mathrm{f}(x)$ is increasing.
8. Figure shows the curve $y=2 x+\frac{1}{x}$ and the normal to the curve at the point $A\left(\frac{1}{2}, k\right)$.

（a）Find the value of k ．
（b）Show that the equation of the normal to the curve at A can be written as

$$
2 x-4 y+11=0
$$

The normal to the curve at A cuts the curve again at the point B ．
（c）Find the coordinates of the point B ，giving your answers as exact fractions．

