Solomon Practice Paper

Pure Mathematics 6H

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	8	
3	8	
4	12	
5	13	
6	14	
7	15	
Total:	75	

How I can achieve better:

•

•

•

[5]

L.	Given that
	$t_{n+1} = t_n - 4$ $n \ge 1$, $t_1 = 3$,
	prove by induction that $t_n = 7 - 4n$ for all integers $n, n \ge 1$.

2.	(a) On the same Argand diagram sketch the locus of the points defined by the equations	[6]
	i. $z + z^* = 2$,	
	ii. $\arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{4}$, where $\operatorname{Im}(z) \ge 0$.	

The region R of the complex z-plane is defined by the inequalities

$$z + z^* \le 2$$
, $\arg\left(\frac{z-2}{z+2}\right) \ge \frac{\pi}{4}$ $\operatorname{Im}(z) \ge 0$.

(b) Shade the region R on the Argand diagram.	[2]
	Total: 8
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•

- 3. The points A, B and C with coordinates $(x_{-1}, y_{-1}), (x_0, y_0)$ and (x_1, y_1) respectively lie on the curve y = f(x) where $x_1 x_0 = x_0 x_{-1} = h$ and $y_n = f(x_n)$.
 - (a) By drawing a sketch, or otherwise, show that

[3]

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}.$$

Given that

$$f'(x) = \sqrt{2x + f(x)}, \quad f(0) = 1, \quad f(0.2) = 1.25,$$

(b) use two applications of the approximation in (a) with a step length of 0.2 to find an estimate for $f(0.6)$.	[5]
	Total: 8

(d) find the volume of the tetrahedron *OABC*.

[5]

[2]

[3]

4. The points A, B and C have position vectors \mathbf{a}, \mathbf{b} and \mathbf{c} respectively such that

$$\mathbf{a} = 2\mathbf{i} - \mathbf{j} + \mathbf{k},$$

$$\mathbf{b} = \mathbf{i} + q\mathbf{j} - 3\mathbf{k},$$

$$\mathbf{c} = 3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k},$$

where q is a constant and $q \neq 2$.

- (a) Find $\overrightarrow{AB} \times \overrightarrow{AC}$, giving your answer in terms of q.
- (b) Hence show that the vector $\mathbf{n} = 4\mathbf{i} \mathbf{k}$ is perpendicular to the plane Π containing A, B and C for all real values of q.
- (c) Find an equation of the plane Π , giving your answer in the form $\mathbf{r}.\mathbf{n} = p$. [2]

Given that q = -1,

	Total: 12
	• •
	• •
	• •
	• •
	• •
	• •
	• •
	• •
	• •
	• •
	• •
	• •
	• •
	• •
	• •
	• •
•••••••••••••••••••••••••••••	• •

Last updated: May 5, 2023

5.	(a) Use De Moivre's theorem to show that	[6]
	$\cos(5\theta) \equiv \cos(\theta) \left(16\cos^4(\theta) - 20\cos^2(\theta) + 5 \right).$	
	(b) By solving the equation $\cos^5(\theta) = 0$, deduce that	[7]
	$\cos^2\left(\frac{3\pi}{10}\right) = \frac{5-\sqrt{5}}{8}.$	
	T	otal: 13

Last updated: May 5, 2023

6.	(a) Find the first three derivatives of $\ln\left(\frac{1+x}{1-2x}\right)$.	[6]
	(b) Hence, or otherwise, find the expansion of $\ln\left(\frac{1+x}{1-2x}\right)$ in ascending powers of x up to including the term in x^3 .	so and [4]
		[1
	(c) State the values of x for which this expansion is valid.	[1]
	(d) Use this expansion to find an approximate value for $\ln \left(\frac{4}{3}\right)$, giving your answer to 3 deplaces.	ecimal [3]
		Total: 14
		• • • • •
		• • • • • •
		• • • • • •
		• • • • • •

Last updated: May 5, 2023

7.

$$\mathbf{A} = \begin{pmatrix} 2 & a & 2 \\ -1 & b & -2 \\ 0 & 0 & c \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 6 & 5 & 2 \\ -1 & 0 & -2 \\ 0 & 0 & 5 \end{pmatrix}$$

and

$$(\mathbf{B} - 2\mathbf{I})\mathbf{A} = 3\mathbf{I} \tag{*}$$

where a, b and c are constants and I is the 3×3 identity matrix.

- [6] (a) Find the values of a, b and c.
- (b) Using equation \star , or otherwise, find \mathbf{A}^{-1} , showing your working clearly. [2]

The transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is represented by the matrix **A**.

(c) Find an equation satisfied by all the points which remain invariant under T. [4]

T maps the vector $\begin{pmatrix} p \\ q \\ r \end{pmatrix}$ onto the vector $\begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix}$

(d) Find the values of p, q and r .		[3]
·	Total:	15
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	

Last updated: May 5, 2023

