Solomon Practice Paper

Pure Mathematics 6C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	10	
4	11	
5	11	
6	14	
7	16	
Total:	75	

How I can achieve better:

•

•

•

1. Given that y satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x \cosh(2y + x), \quad y = 1 \quad \text{at} \quad x = 1,$$

(a) use the approximation $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 \approx \frac{y_1 - y_0}{h}$ to obtain an estimate for y at $x = 1.01$, (b) use the approximation $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 \approx \frac{y_1 - y_{-1}}{2h}$ to obtain an estimate for y at $x = 0.99$.	[3] [3]
	Total: 6

2.	The points A, B and C have coordinates $(2, 1, -1), (-2, 4, -2)$ and $(a, -5, 1)$ respectively, relative to the origin O , where $a \neq 10$.		
	(a) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.	[4]	
	The area of triange ABC is $4\sqrt{10}$ square units.		
	(b) Find the possible values of the constant a .	[3]	
	r.	Total: 7	

Total: 10

3.	(a) Given that $z = \cos(\theta) + \mathbf{i}\sin(\theta)$, show that	[2]
	$z^n + \frac{1}{z^n} = 2\cos(n\theta)$	
	where n is a positive integer.	

The equation $5z^4 - 11z^3 + 16z^2 - 11z + 5 = 0$ has no real roots.

(b)	Use the result in part (a) to solve the equation, giving your answers in the form $a + ib$ where	[8]
	$a, b \in \mathbb{R}$.	

[6]

4.	Given	tł	ıat

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

(a) prove by induction that

$$\mathbf{A}^n = \begin{pmatrix} 1 & n & \frac{1}{2}n(n+1) \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$

for all positive integers n.

(b) Find the inverse of \mathbf{A}^n .		[5]
	Total:	
	rotar.	11
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	

5. Given that

$$f(x) = \arccos(x), \quad -1 \le x \le 1,$$

show that

(a)
$$f'(x) = \frac{-1}{(1-x^2)^{\frac{1}{2}}}$$
, [3]

(b)
$$(1-x^2)f''(x) - xf'(x) = 0.$$
 [3]

(c)	Use Maclaurin's theorem to find the expansion of $f(x)$ in ascending powers of x up to and	[5]
	including the term in x^3 .	

	Total: 11
	•
	•
••••••	
	•
	•
	1
	•
	•
	•
	,

Last updated: May 5, 2023

[7]

14

6. The eigenvalues of the matrix

$$\mathbf{M} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

are λ_1, λ_2 and λ_3 .

- (a) Show that $\lambda_1 = 2$ is an eigenvalue of M and find the other two eigenvalues λ_2 and λ_3 .
- (b) Find an eigenvector corresponding to the eigenvalue 2. [4]

Given that $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ are eigenvectors of **M** corresponding to λ_2 and λ_3 respectively,

(c) write down a matrix **P** such that

$$\mathbf{P}^{-1}\mathbf{MP} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}.$$

Tot	tal:

Last updated: May 5, 2023

7. The complex number z = x + iy, where x and y are real, satisfies the equation

$$|z + 1 + 8\mathbf{i}| = 3|z + 1|.$$

The complex number z is represented by the point P in the Argand diagram.

- (a) Show that the locus of P is a circle and state the centre and radius of this circle.

Total: 16

(b) Represent on the same Argand diagram the loci

[4]	
1	

[7]

$$|z + 1 + 8\mathbf{i}| = 3|z + 1|$$
 and $|z| = \left|z - \frac{14}{5}\right|$

(c) Find the complex numbers corresponding to the points of intersection of these loci, giving [5]your answers in the form a + ib where a and b are real.

Last updated: May 5, 2023

