Solomon Practice Paper

Pure Mathematics 3J

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	5	
3	8	
4	10	
5	10	
6	12	
7	12	
8	13	
Total:	75	

How I can achieve better:

•

•

•

[5]

1.	Given that
	$\frac{x^2 + 9x - 10}{(x-2)^2(x+1)} \equiv \frac{A}{(x-2)^2} + \frac{B}{x-2} + \frac{C}{x+1},$
	$(x-2)^2(x+1) - (x-2)^2 \cdot x - 2 \cdot x + 1$
	find the values of A, B and C .
	••••••

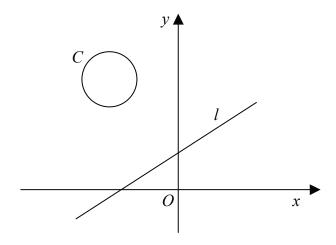
[5]

2. Show that $\int_{2}^{4} x (x^{2} - 4)^{\frac{1}{2}} dx = 8\sqrt{3}.$	

3.	(a)	Find the binomial expansion of $(1+4x)^{\frac{1}{4}}$ for $ x <\frac{1}{4}$ in ascending powers of x as far as the term in x^3 .	[3]
	(b)	By substituting $x=0.01$ into your expansion, find the fourth root of 16.64 correct to 6 decimal places.	[5]
			Total: 8

Last updated: May 5, 2023

4.	. (a) Use the identity	1	[4]
	C	$\cot(x) \equiv \frac{\cos(x)}{\sin(x)}$	
	to show that $\frac{\mathrm{d}}{\mathrm{d}x} c$	$\cot(x) = -\csc^2(x).$	
	(b) Use integration by parts to find		[6]
	·	Total:	10


5. At time t the vectors \mathbf{r} and \mathbf{s} are given by

$$\mathbf{r} = 2t^2\mathbf{i} - t\mathbf{j} + \mathbf{k},$$

 $\mathbf{s} = (t+2)\mathbf{i} + (t^2+5)\mathbf{j} + (1-t^3)\mathbf{k}.$

(a) Find the angle between $\bf r$ and $\bf s$ when t=2, giving your answer in degrees correct to 1 [5] decimal place.

(b) Find the values of t for which \mathbf{r} and \mathbf{s} are perpendicular.	[5]
r	Total: 10

6. Figure shows the circle C with equation $x^2 + y^2 + 10x - 16y + 85 = 0$ and the line l with equation 2x - 3y + 8 = 0.

(a) Find an equation of the line which is perpendicular to line l and passes through the centre

[7]of circle C. (b) Hence, or otherwise, find the minimum distance between l and C. [5]Total: 12

[3]

Total: 12

7. A physics student is investigating the change in the size of an air bubble as it rises in water. The student believes that the volume, V m³ of a bubble is related to its depth, h m, by the formula

$$V = \frac{k}{h+10},$$

where k is a constant.

A bubble of volume 0.1 m³ is formed at a depth of 5 m in a water tank. Using the student's model,

- (a) find the volume of the bubble when it has risen 3 m, (hint: h = 5 3 = 2) [4]
- (b) show that, at this instant, V is increasing at the rate of $\frac{1}{96}$ m³ per metre the bubble rises.

Assuming that the bubble is spherical as it rises,

(c) find, correct to 2 significant figures, the rate at which the radius of the bubble is increasing per metre the bubble rises at the instant when it has risen 3 m.

 • • •	 • • •	• • •	 • • •	 	• • •	• • •		 	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • •	 	• • •	 • • •	 	• • •			 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • •	 	• • •	 • • •	 	• • •			 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • •	 • • •	• • •	 • • •	 	• • •			 	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • • •	 • • •	• • •	 • • •	 	• • •	• • •	• • •	 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • • •	 	• • •	 • • •	 • • •	• • •	• • •	• • •	 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	
 • • • •	 	• • •	 • • •	 • • •	• • •	• • •	• • •	 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • • •	 	• • •	 • • •	 	• • •			 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • • •	 	• • •	 • • •	 	• • •			 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • • •	 	• • •	 • • •	 	• • •			 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • •	 	• • •	 • • •	 • • •	• • •	• • •	• • •	 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • •	 	• • •	 	 	• • •			 	• • •			 		 • • •	• • •	 • • •		 	• • •
 • • •	 	• • •	 	 	• • •			 	• • •			 		 • • •	• • •	 • • •		 	• • •
 • • •	 • • •	• • •	 	 	• • •			 	• • •			 		 • • •	• • •	 • • •		 	
 • • •	 • • •	• • •	 	 	• • •			 	• • •			 		 • • •	• • •	 • • •		 	
 • • •	 • • •	• • •	 • • •	 	• • •		• • •	 • • •	• • •	• • •	• • •	 	• • •	 	• • •	 • • •	• • •	 	• • •
 • • •	 • • •	• • •	 • • •	 • • • •	• • •		• • •	 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • • •	 	• • •	 • • •	 • • •	• • •		• • •	 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	
 • • • •	 		 • • •	 	• • •			 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • •	 • • •	• • •	 • • •	 • • • •	• • •		• • •	 • • •	• • •	• • •	• • •	 	• • •	 • • •	• • •	 • • •	• • •	 	• • •
 • • •	 • • •	• • •	 • • •	 • • • •	• • •		• • •	 • • •	• • •	• • •	• • •	 	• • •	 	• • •	 • • •	• • •	 	• • •
 • • •	 • • •	• • •	 • • •	 • • • •	• • •		• • •	 • • •	• • •	• • •	• • •	 	• • •	 	• • •	 • • •	• • •	 	• • •
 • • •	 • • •	• • •	 	 				 				 		 • • •	• • •	 • • •		 	• • •

Last updated: May 5, 2023

[3]

Total: 13

8.	(a)	By	taking	logarithms,	prove t	hat	if	x =	3^{1-t} ,	then
----	-----	----	--------	-------------	---------	-----	----	-----	-------------	------

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\left(\ln(3)\right)3^{1-t}.$$

A curve has parametric equations

$$x = 3^{1-t}$$
 and $y = 9^t - 1$.

(b) Show that		[4]
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (-2) \cdot 3^{3t-1}.$	

(c) Find an equation of the tangent to the curve at the point (3,0).	[3]
(d) Find a Cartesian equation for the curve.	[3]

	 		• • • • • • • • • • • •	 	
• • • • • • • • • • • • • • • • • • • •	 		• • • • • • • • • • • • • • • • • • • •	 	
	 		• • • • • • • • • • • • • • • • • • • •	 	
• • • • • • • • • • • •	 	• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 	• • • • • • • • • • • • • • • • • • • •
	 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 	

