Solomon Practice Paper Pure Mathematics 3F Time allowed: 90 minutes Centre: www.CasperYC.club Name: Teacher: | Question | Points | Score | |----------|--------|-------| | 1 | 7 | | | 2 | 8 | | | 3 | 9 | | | 4 | 10 | | | 5 | 11 | | | 6 | 13 | | | 7 | 17 | | | Total: | 75 | | ## How I can achieve better: • • • 1. $$f(x) \equiv 2x^2 + 7x - 3.$$ | Given that when $f(x)$ is divided by $(2x - k)$ the remainder is -8 ,
(a) find the two possible values of k . | [4] | |--|----------| | Given also that when $f(x)$ is divided by $(x-3k)$ the remainder is 27, | | | (b) find k . | [3] | | | Total: 7 | | | lotai. 1 | Last updated: May 5, 2023 2. Figure shows a square PQRS. The corners of the square have the following coordinates: $$P(2,5)$$, $Q(4,11)$, $R(10,9)$, $S(8,3)$. The circle C_1 circumscribes the square. - (a) Find the coordinates of the centre of circle C_1 . - (b) Find the radius of circle C_1 . [2] The circle C_2 is inscribed in the square | The circle \mathcal{O}_2 is inscribed in the square. | | |--|----------| | (c) Find an equation of circle C_2 . | [4] | | | Total: 8 | [2] 8 | 3. | With respect to a fixed origin, O , the points A and B have position vectors $(\mathbf{i} - 5\mathbf{j} - 4\mathbf{k})$ and $(3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k})$ respectively. | | | | |----|---|------------|--|--| | | (a) Write down vector \overrightarrow{AB} . | [2] | | | | | The point C has position vector $(9\mathbf{i} - 7\mathbf{j} - 2\mathbf{k})$. | | | | | | (b) Show that \overrightarrow{AC} is perpendicular to \overrightarrow{AB} . | [3]
[4] | | | | | (c) Find the area of triangle ABC in the form $k\sqrt{6}$. | | | | | | | | | | | | | Total: 9 | 4. | (a) Given that $ x < \frac{1}{2}$, expand $(1-2x)^{\frac{1}{2}}$ as a series in ascending powers of x , as far as the term in x^3 . | [3] | |----|---|---------| | | (b) Show that when $x = 0.01$, | [3] | | | $(1-2x)^{\frac{1}{2}} = \frac{7}{10}\sqrt{2}.$ | ι. | | | (c) Hence, use your series to find the value of $\sqrt{2}$ correct to 6 decimal places. | [4] | | | То | tal: 10 | | | | 0011 10 | 5. | (a) Show that | [4] | |----|---|-------| | | $\int_0^{\frac{\pi}{4}} (1 - \sin(4x)) \mathrm{d}x = \frac{1}{4} (\pi - 2).$ | | | | (b) Use integration by parts to find | [7] | | | $\int x^2 e^{\frac{1}{2}x} dx.$ | | | | Tota | l: 11 | Last updated: May 5, 2023 | 6. | (a) i. Differentiate 3^{2x} with respect to x . | [7] | |----|---|----------| | | ii. Find the coordinates of the stationary point on the curve | | | | $y = 3^{2x} - 18(3^x).$ | | | | (b) A curve is given by | [6] | | | $(x+2y)^2 - 3x^2 = 4.$ | | | | Find the gradient of the curve at the point $(2, -3)$. | | | | | otal: 13 | Last updated: May 5, 2023 7. Figure shows part of the curve with parametric equations $$x = \frac{3}{t}$$, and $y = 4t - t^2$, $t \neq 0$. (a) Find the value of the parameter t at the point A where the curve meets the x-axis. [2] The point B on the curve has parameter t=1. (b) Find an equation of the normal to the curve at the point B. [6] [9] (c) Show that the area of the shaded region enclosed by the curve, the x-axis and the normal to the curve at B is $12(2\ln(2) - 1)$. Total: 17 | ••••• | | | | |-------|---|---|--| | | | | | | | | | | | | | | | | ••••• | • | | | | | • | | | | | • | | | | | • | • | |