Solomon Practice Paper

Pure Mathematics 1L

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	7	
4	8	
5	10	
6	12	
7	13	
8	14	
Total:	75	

How I can achieve better:

•

•

•

[5]

1. Show that $2\sqrt{75} + \frac{4}{2\sqrt{3} - 4}$											
	can be written in the form $a\sqrt{3} + b$ where a and b are integers to be found.										

2.	(a) Given that $t = x^{\frac{1}{3}}$, express $2x^{\frac{2}{3}}$ in terms of t .	[2]
	(b) Hence, or otherwise, solve the equation	[4]
	$2x^{\frac{2}{3}} + 5x^{\frac{1}{3}} - 12 = 0.$	
		Total: 6

3.	Tom and Jim share the same birthday.	
	Today, Tom is x years old and Jim is 4 years older than him.	
	(a) Given that Jim's age is less than 50% more than Tom's, write down a linear inequality satisfied by x .	[2]
	(b) Given also that the product of Tom and Jim's ages is not more than 140, write down a quadratic inequality satisfied by x .	[1]
	(c) By solving your inequalities, find the possible values of x .	[4]
		Total: 7

Last updated: May 5, 2023

4.	(a)	Given that	[3]
	()	$x(2x^3 - x)(5 - x^{-2}) \equiv Ax^4 + Bx^2 + C$	
		find the values of A, B and C .	
	(b)	The curve $y = f(x)$ passes through the point with coordinates $(1, 2)$.	[5]
		Given also that $f'(x) = x(2x^3 - x)(5 - x^{-2})$	
		find an expression for $f(x)$.	
			T . 1 . 0
			Total: 8
	• • • •		
		••••••••••••••••••••••••••••••	
	• • • •		
	• • • •		
	• • • •		
	• • • •		
	• • • •		

5.	An athlete is training to run in long distance races. In the first week she runs 50 miles and she intends to increase this amount by 10% each week.	e
	(a) Calculate how far she should run in the second week.	[2
	(b) Show that, in total, she should run 165.5 miles in the first three weeks.	[1
	(c) By summing an appropriate geometric series find to the nearest mile the total distance that she should run during the first eight weeks.	t [4
	(d) Show that for her to have run more than 2000 miles in total the number of weeks for which she has been training, n , must satisfy the condition: $1.1^n > 5$.	h [3
		Total: 1
		•
		•
		•
		•
		•
		•
		•
		•
		ē
		•

6. Figure shows the curve $y = x^2 + kx + 15$ which crosses the y-axis at the point P(0, 15).

Q is the minimum point on the curve.

(a) Find the coordinates of the point Q in terms of k.

[3]

Given that k = -4,

(b) calculate the distance PQ giving your answer in surd form as simply as possible,

[3]

[6]

(c) find the area of the shaded region R enclosed by the curve and the line PQ.

Total: 12

												 							 					 				 						 •	 •		
																																			•		
																																			•		
																																			•		
																																			•		
																																			•		
•	 •	٠.	•	 	•	 •	•	 •	•	 •	 	•	 •	 •	•	 	•	•	 •	 	•	 •															

.....

7.	(a) Sketch the curve $y = 3\sin(\theta) + 1$ in the interval $0 \le \theta \le 360^{\circ}$. Mark on your sketch the coordinates of any stationary points.	[5]
	(b) Show that the curves $y = 3\sin(\theta) + 1$ and $y = 2\cos^2(\theta)$ will intersect when	[2]
	$2\sin^2(\theta) + 3\sin(\theta) - 1 = 0.$	
	(c) Hence, find the coordinates of the points of intersection between these two curves in the interval $0 \le \theta \le 360^{\circ}$.	[6]
	Total	: 13

8. Figure shows the curve y = f(x) where

$$f(x) \equiv 2x^3 - 9x^2 + x + 12.$$

- (a) Given that the curve cuts the x-axis at the point A with coordinates (-1,0), write down a linear factor of f(x).
- (b) Hence, factorise f(x) fully and find the coordinates of the points B and C where the curve again cuts the x-axis.
- (c) Find an equation of the normal to the curve at the point A. [5]
- (d) The normal to the curve at A and the tangent to the curve at C meet at the point D. [3] Prove that $\angle ADC$ is a right-angle.

٠.	•	•	 •	 •	 •	• •	 •	 	•	 •		 •	 ٠.	•	 •	 ٠.	•	 ٠.		 ٠.	•	 ٠.	•	 	٠.	•	 							
							 •	 				 •							 •	 			 ٠.	•	 ٠.		 ٠.	•	 ٠.		 	٠.	•	
								 												 			 		 ٠.		 ٠.		 ٠.		 			
								 												 			 		 		 ٠.		 ٠.		 			
								 												 			 		 		 ٠.		 		 			

[1]

[5]

Total: 14

 	• • • • • • • • • • • • • • • • • • • •	

