Solomon Practice Paper

Pure Mathematics 1J

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	7	
2	7	
3	8	
4	8	
5	9	
6	9	
7	11	
8	16	
Total:	75	

How I can achieve better:

•

•

•

[3]

1. Figure shows a sector OAB of a circle, centre O and radius 12 cm.

Given that the perimeter of the sector OAB is 32 cm, find

(a) the size of $\angle AOB$ in radians as an exact fraction,	[3]
(b) the area of the shaded segment in cm ² , giving your answer correct to 3 significant figures.	[4]
	Total: 7

2.	(a) Find $\int (3x-1)^2 dx$.	[4]
	Given that $\frac{dy}{dx} = (3x - 1)^2$ and that when $x = -1, y = 2$,	
	(b) find y in terms of x .	[3]
		Total: 7

3.	(a) Prove from first principles that the sum of the first n natural numbers,	[4]
	$1 + 2 + 3 + 4 + \ldots + n$,	
	is given by $\frac{1}{2}n(n+1).$	
	(b) Hence evaluate the sum of the integers between -30 and 72 inclusive.	[4] Total: 8

4.	A is the point $(8,0)$ and B is the point $(12,6)$.	
	(a) Find an equation of the line passing through the points A and B .	[3]
	M and N are the midpoints of OA and OB respectively, where O is the origin.	
	(b) Calculate the area of the trapezium $ABNM$.	[5]
		Total: 8
		10001. 0

Last updated: May 5, 2023

5.	i. $4^x = y^2$	[5]
	ii. $2^{x+2} = 4y$	
	(b) By using your answers to part (a), or otherwise, solve the equation	[4]
	$4^x - 2^{x+2} - 32 = 0.$	
		Total: 9

6.	(a) Show that the solutions of the equation	[4]
	$5\tan(\theta) - 6\cos(\theta) = 0,$	
	will be given by the values of θ for which	
	$6\sin^2(\theta) + 5\sin(\theta) - 6 = 0,$	
	(b) Hence solve the equation $5\tan(\theta) - 6\cos(\theta) = 0$	[5]
	for θ in the interval $0 \le \theta \le 2\pi$, giving your answers correct to 2 decimal places.	Total: 9
		Iotai: 9

Last updated: May 5, 2023

7. Figure shows a design consisting of four identical circles of radius r,

which are shaded, arranged such that their centres are at the four corners of a square of side 2r. A larger circle of radius R circumscribes the four smaller circles.

(a) Show that $R = (1 + \sqrt{2})r$.	[5]
---------------------------------------	-----

(b) Hence show that the ratio of the total area of the four shaded circles to the area of the larger circle is equal to $(12 - 8\sqrt{2})$: 1.

••••••	
•••••••••••••••••••••••••••••••••••••••	• • • • •
	• • • • •
	• • • • •

Total: 11

8. Figure shows part of the curve

$$y = x^2 + \frac{8}{x}$$

which crosses the x-axis at the point A.

(a) Find the coordinates of the point A.

[3]

The line l is the normal to the curve at the point A.

(b) Find an equation of the line l.

[6]

(c) Show that the line l will intersect the curve where

[3]

$$6x^3 - x^2 - 2x + 48 = 0.$$

(d) Hence prove that l does not cross the curve other than at A.

Total: 16

[4]

٠.	 ٠.	 	 	•	 	٠.	٠.	•	٠.	٠.	 	•	 •	 •	 •	 •	 •	 ٠.	•	 ٠.	•	 ٠.	•	 		•	 		٠.	•	 	٠.	•	 	٠.	٠.	•	• •
	 ٠.	 	 ٠.		 		٠.				 ٠.			 •				 ٠.	•	 ٠.		 		 	٠.	•	 	٠.	٠.		 ٠.	٠.		 	٠.	٠.		
	 	 	 		 						 							 		 		 		 	٠.	•	 		٠.		 			 		٠.		

 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	

