Solomon Practice Paper

Core Mathematics 4B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	9	
5	9	
6	11	
7	12	
8	13	
Total:	75	

How I can achieve better:

- •
- •

Last updated: May 5, 2023

1. Use integration by parts to find

$\int x^2 \sin(x) \, \mathrm{d}x.$

[6]

2. Given that y = -2 when x = 1, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 \sqrt{x},$$

giving your answer in the form y = f(x).

$$4x^2 - 2xy - y^2 + 11 = 0.$$

Find an equation for the normal to the curve at the point with coordinates (-1, -3).

4. (a) Expand

 $\left(1+ax\right)^{-3}, \qquad |ax| < 1,$

in ascending powers of x up to and including the term in x^3 . Give each coefficient as simply as possible in terms of the constant a.

Given that the coefficient of x^2 in the expansion of

$$\frac{6-x}{(1+ax)^3}, \qquad |ax| < 1,$$

is 3,

(b) find the two possible values of a.

Given also that a < 0,

(c) show that the coefficient of
$$x^3$$
 in the expansion of $\frac{6-x}{(1+ax)^3}$ is $\frac{14}{9}$. [2]

Total: 9

[4]

5. Figure shows the curve with equation $y = \frac{1}{\sqrt{3x+1}}$.

The shaded region is bounded by the curve, the x-axis and the lines x = 1 and x = 5.

(a) Find the area of the shaded region.

The shaded region is rotated completely about the x-axis.

(b) Find the volume of the solid formed, giving your answer in the form $k\pi \ln(2)$, where k is a [5] simplified fraction.

Total: 9

[4]

Core Mathematics – Practice Paper 4B

6.

$$f(x) = \frac{15 - 17x}{(2+x)(1-3x)^2}, \qquad x \neq -2, \ x \neq \frac{1}{3}.$$

(a) Find the values of the constants A, B and C such that

$$f(x) = \frac{A}{2+x} + \frac{B}{1-3x} + \frac{C}{(1-3x)^2}.$$

(b) Find the value of

$$\int_{-1}^{0} \mathbf{f}(x) \, \mathrm{d}x,$$

giving your answer in the form $p + \ln(q)$, where p and q are integers.

Total: 11

[4]

[7]

7. Figure shows the curve with parametric equations

$$x = -1 + 4\cos(\theta)$$
 and $y = 2\sqrt{2}\sin(\theta)$, $0 \le \theta < 2\pi$.

The point P on the curve has coordinates $(1,\sqrt{6})$.

(a) Find the value of θ at P .	[2]
(b) Show that the normal to the curve at P passes through the origin.	[7]
(c) Find a Cartesian equation for the curve.	[3]
	Total: 12

- 8. The line l_1 passes through the points A and B with position vectors $(-3\mathbf{i}+3\mathbf{j}+2\mathbf{k})$ and $(7\mathbf{i}-\mathbf{j}+12\mathbf{k})$ respectively, relative to a fixed origin.
 - (a) Find a vector equation for l_1 .

The line l_2 has the equation

$$\mathbf{r} = (5\mathbf{j} - 7\mathbf{k}) + \mu(\mathbf{i} - 2\mathbf{j} + 7\mathbf{k}).$$

The point C lies on l_2 and is such that AC is perpendicular to BC.

(b) Show that one possible position vector for C is $\mathbf{i} + 3\mathbf{j}$ and find the other. [8]

Assuming that C has position vector $(\mathbf{i} + 3\mathbf{j})$,

(c) find the area of triangle ABC, giving your answer in the form $k\sqrt{5}$. [3]

Total: 13

[2]