Solomon Practice Paper

Core Mathematics 4B
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	9	
5	9	
6	11	
7	12	
8	13	
Total:	75	

How I can achieve better:

1. Use integration by parts to find

$$
\int x^{2} \sin (x) \mathrm{d} x .
$$

Last updated: May 5, 2023
2. Given that $y=-2$ when $x=1$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{2} \sqrt{x}
$$

giving your answer in the form $y=\mathrm{f}(x)$.
3. A curve has the equation

$$
4 x^{2}-2 x y-y^{2}+11=0
$$

Find an equation for the normal to the curve at the point with coordinates $(-1,-3)$.
4. (a) Expand

$$
(1+a x)^{-3}, \quad|a x|<1
$$

in ascending powers of x up to and including the term in x^{3}. Give each coefficient as simply as possible in terms of the constant a.

Given that the coefficient of x^{2} in the expansion of

$$
\frac{6-x}{(1+a x)^{3}}, \quad|a x|<1
$$

is 3 ,
(b) find the two possible values of a.

Given also that $a<0$,
(c) show that the coefficient of x^{3} in the expansion of $\frac{6-x}{(1+a x)^{3}}$ is $\frac{14}{9}$.
5. Figure shows the curve with equation $y=\frac{1}{\sqrt{3 x+1}}$.

The shaded region is bounded by the curve, the x-axis and the lines $x=1$ and $x=5$.
(a) Find the area of the shaded region.

The shaded region is rotated completely about the x-axis.
(b) Find the volume of the solid formed, giving your answer in the form $k \pi \ln (2)$, where k is a simplified fraction.
6.

$$
\mathrm{f}(x)=\frac{15-17 x}{(2+x)(1-3 x)^{2}}, \quad x \neq-2, x \neq \frac{1}{3} .
$$

(a) Find the values of the constants A, B and C such that

$$
\mathrm{f}(x)=\frac{A}{2+x}+\frac{B}{1-3 x}+\frac{C}{(1-3 x)^{2}} .
$$

(b) Find the value of

$$
\int_{-1}^{0} \mathrm{f}(x) \mathrm{d} x,
$$

giving your answer in the form $p+\ln (q)$, where p and q are integers.

7．Figure shows the curve with parametric equations

$$
x=-1+4 \cos (\theta) \quad \text { and } \quad y=2 \sqrt{2} \sin (\theta), \quad 0 \leq \theta<2 \pi .
$$

The point P on the curve has coordinates $(1, \sqrt{6})$ ．
（a）Find the value of θ at P ．
（b）Show that the normal to the curve at P passes through the origin．
（c）Find a Cartesian equation for the curve．
8. The line l_{1} passes through the points A and B with position vectors $(-3 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k})$ and $(7 \mathbf{i}-\mathbf{j}+12 \mathbf{k})$ respectively, relative to a fixed origin.
(a) Find a vector equation for l_{1}.

The line l_{2} has the equation

$$
\mathbf{r}=(5 \mathbf{j}-7 \mathbf{k})+\mu(\mathbf{i}-2 \mathbf{j}+7 \mathbf{k}) .
$$

The point C lies on l_{2} and is such that $A C$ is perpendicular to $B C$.
(b) Show that one possible position vector for C is $\mathbf{i}+3 \mathbf{j}$ and find the other.

Assuming that C has position vector $(\mathbf{i}+3 \mathbf{j})$,
(c) find the area of triangle $A B C$, giving your answer in the form $k \sqrt{5}$.

