## Solomon Practice Paper

Core Mathematics 3I
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

| Question | Points | Score |
| :---: | :---: | :---: |
| 1 | 5 |  |
| 2 | 8 |  |
| 3 | 8 |  |
| 4 | 8 |  |
| 5 | 9 |  |
| 6 | 11 |  |
| 7 | 12 |  |
| 8 | 14 |  |
| Total: | 75 |  |

## How I can achieve better:

1. Express

$$
\frac{2 x}{2 x^{2}+3 x-5} \div \frac{x^{3}}{x^{2}-x}
$$

as a single fraction in its simplest form.
2. Figure shows the curves $y=3+2 \mathrm{e}^{x}$ and $y=\mathrm{e}^{x+2}$

which cross the $y$-axis at the points $A$ and $B$ respectively.
(a) Find the exact length $A B$.

The two curves intersect at the point $C$.
(b) Find an expression for the $x$-coordinate of $C$ and show that the $y$-coordinate of $C$ is $\frac{3 \mathrm{e}^{2}}{\mathrm{e}^{2}-2}$.
3.

$$
\mathrm{f}(x)=\frac{x^{2}+3}{4 x+1}, x \in \mathbb{R}, x \neq-\frac{1}{4}
$$

(a) Find and simplify an expression for $\mathrm{f}^{\prime}(x)$.
(b) Find the set of values of $x$ for which $\mathrm{f}(x)$ is increasing.
4. The curve $C$ has the equation $y=x^{2}-5 x+2 \ln \left(\frac{x}{3}\right), x>0$.
(a) Show that the normal to $C$ at the point where $x=3$ has the equation

$$
3 x+5 y+21=0
$$

(b) Find the $x$-coordinates of the stationary points of $C$.
5. The functions f and g are defined by

$$
\begin{aligned}
\mathrm{f}(x) & \equiv 6 x-1, & & x \in \mathbb{R} \\
\mathrm{~g}(x) & \equiv \log _{2}(3 x+1), & & x \in \mathbb{R}, x>-\frac{1}{3}
\end{aligned}
$$

(a) Evaluate $\operatorname{gf}(1)$.
(b) Find an expression for $\mathrm{g}^{-1}(x)$.
(c) Find, in terms of natural logarithms, the solution of the equation $\mathrm{fg}^{-1}(x)=2$.
6. (a) Use the identities for $\cos (A+B)$ and $\cos (A-B)$ to prove that

$$
\cos (P)-\cos (Q) \equiv-2 \sin \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right)
$$

(b) Hence find all solutions in the interval $0 \leq x<180^{\circ}$ to the equation

$$
\cos \left(5 x^{\circ}\right)+\sin \left(3 x^{\circ}\right)-\cos \left(x^{\circ}\right)=0 .
$$

7. The function f is defined by

$$
\mathrm{f}(x) \equiv x^{2}-2 a x, \quad x \in \mathbb{R}
$$

where $a$ is a positive constant.
(a) Showing the coordinates of any points where each graph meets the axes, sketch on separate
diagrams the graphs of
i. $y=|\mathrm{f}(x)|$,
ii. $y=\mathrm{f}(|x|)$.

The function g is defined by

$$
\mathrm{g}(x) \equiv 3 a x, \quad x \in \mathbb{R}
$$

(b) Find $\operatorname{fg}(a)$ in terms of $a$.
(c) Solve the equation $\operatorname{gf}(x)=9 a^{3}$.
8.

$$
\mathrm{f}(x)=2 x+\sin (x)-3 \cos (x) .
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root in the interval $[0.7,0.8]$.
(b) Find an equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point where it crosses the $y$-axis.
(c) Find the values of the constants $a, b$ and $c$, where $b>0$ and $0<c<\frac{\pi}{2}$, such that

$$
\mathrm{f}^{\prime}(x)=a+b \cos (x-c) .
$$

(d) Hence find the $x$-coordinates of the stationary points of the curve $y=\mathrm{f}(x)$ in the interval $0 \leq x \leq 2 \pi$, giving your answers to 2 decimal places.

