Solomon Practice Paper

Core Mathematics 3E
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	5	
2	10	
3	11	
4	11	
5	12	
6	13	
7	13	
Total:	75	

How I can achieve better:

1. Express

$$
\frac{2 x^{3}+x^{2}}{x^{2}-4} \times \frac{x-2}{2 x^{2}-5 x-3}
$$

as a single fraction in its simplest form.
2. (a) Prove that, for $\cos (x) \neq 0$,

$$
\sin (2 x)-\tan (x) \equiv \tan (x) \cos (2 x)
$$

(b) Hence, or otherwise, solve the equation

$$
\sin (2 x)-\tan (x)=2 \cos (2 x)
$$

for x in the interval $0 \leq x \leq 180^{\circ}$.
3.

$$
\mathrm{f}(x)=x^{2}+5 x-2 \sec (x), \quad x \in \mathbb{R}, \quad-\frac{\pi}{2}<x<\frac{\pi}{2} .
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root in the interval $[1,1.5]$.

A more accurate estimate of this root is to be found using iterations of the form

$$
x_{n+1}=\arccos \left(\mathrm{g}\left(x_{n}\right)\right) .
$$

(b) Find a suitable form for $\mathrm{g}(x)$ and use this formula with $x_{0}=1.25$ to find x_{1}, x_{2}, x_{3} and x_{4}. Give the value of x_{4} to 3 decimal places.

The curve $y=\mathrm{f}(x)$ has a stationary point at P.
(c) Show that the x-coordinate of P is 1.0535 correct to 5 significant figures.
4. (a) Differentiate each of the following with respect to x and simplify your answers.
i. $\sqrt{1-\cos (x)}$
ii. $x^{3} \ln (x)$
(b) Given that

$$
x=\frac{y+1}{3-2 y},
$$

find and simplify an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of y.
5. (a) Express $\sqrt{3} \sin (\theta)+\cos (\theta)$ in the form $R \sin (\theta+\alpha)$ where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(b) State the maximum value of $\sqrt{3} \sin (\theta)+\cos (\theta)$ and the smallest positive value of θ for which this maximum value occurs.
(c) Solve the equation

$$
\sqrt{3} \sin (\theta)+\cos (\theta)+\sqrt{3}=0
$$

for θ in the interval $-\pi \leq \theta \leq \pi$, giving your answers in terms of π.
6. The function f is defined by

$$
\mathrm{f}(x) \equiv 3-x^{2}, x \in \mathbb{R}, x \geq 0
$$

(a) State the range of f.
(b) Sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}$ on the same diagram.
(c) Find an expression for f^{-1} and state its domain.

The function g is defined by

$$
\mathrm{g}(x) \equiv \frac{8}{3-x}, x \in \mathbb{R}, x \neq 3 .
$$

(d) Evaluate fg(-3).
(e) Solve the equation $\mathrm{f}^{-1}(x)=\mathrm{g}(x)$.
7. Figure shows a graph of the temperature of a room, $T^{\circ} \mathrm{C}$, at time t minutes.

The temperature is controlled by a thermostat such that when the temperature falls to $12^{\circ} \mathrm{C}$, a heater is turned on until the temperature reaches $18^{\circ} \mathrm{C}$. The room then cools until the temperature again falls to $12^{\circ} \mathrm{C}$.

For t in the interval $10 \leq t \leq 60, T$ is given by

$$
T=5+A \mathrm{e}^{-k t}
$$

where A and k are constants.
Given that $T=18$ when $t=10$ and that $T=12$ when $t=60$,
(a) show that $k=0.0124$ to 3 significant figures and find the value of A,
(b) find the rate at which the temperature of the room is decreasing when $t=20$.

The temperature again reaches $18^{\circ} \mathrm{C}$ when $t=70$ and the graph for $70 \leq t \leq 120$ is a translation of the graph for $10 \leq t \leq 60$.
(c) Find the value of the constant B such that for $70 \leq t \leq 120$

$$
T=5+B \mathrm{e}^{-k t}
$$

