Solomon Practice Paper

Core Mathematics 3E

Time allowed: 90 minutes

Question	Points	Score
1	5	
2	10	
3	11	
4	11	
5	12	
6	13	
7	13	
Total:	75	

Centre: www.CasperYC.club

Name:

Teacher:

How I can achieve better:

- •
- -

Last updated: May 5, 2023

1. Express

$$\frac{2x^3 + x^2}{x^2 - 4} \times \frac{x - 2}{2x^2 - 5x - 3}$$

as a single fraction in its simplest form.

2. (a) Prove that, for $\cos(x) \neq 0$,

 $\sin(2x) - \tan(x) \equiv \tan(x)\cos(2x).$

(b) Hence, or otherwise, solve the equation

$$\sin(2x) - \tan(x) = 2\cos(2x).$$

for x in the interval $0 \le x \le 180^{\circ}$.

Total: 10

[5]

[5]

3.

$$f(x) = x^2 + 5x - 2\sec(x), \quad x \in \mathbb{R}, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}$$

(a) Show that the equation f(x) = 0 has a root in the interval [1, 1.5].

A more accurate estimate of this root is to be found using iterations of the form

$$x_{n+1} = \arccos(g(x_n)).$$

(b) Find a suitable form for g(x) and use this formula with $x_0 = 1.25$ to find x_1, x_2, x_3 and x_4 . [6] Give the value of x_4 to 3 decimal places.

The curve y = f(x) has a stationary point at P.

(c) Show that the x-coordinate of P is 1.0535 correct to 5 significant figures. [3]

Total: 11

[2]

x

i. $\sqrt{1 - \cos(x)}$ ii. $x^3 \ln(x)$

(b) Given that

$$=\frac{y+1}{3-2y},$$

find and simplify an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of y.

Total: 11

[6]

[5]

- 5. (a) Express $\sqrt{3}\sin(\theta) + \cos(\theta)$ in the form $R\sin(\theta + \alpha)$ where R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - (b) State the maximum value of $\sqrt{3}\sin(\theta) + \cos(\theta)$ and the smallest positive value of θ for which [3] this maximum value occurs.
 - (c) Solve the equation

$$\sqrt{3}\sin(\theta) + \cos(\theta) + \sqrt{3} = 0,$$

for θ in the interval $-\pi \leq \theta \leq \pi$, giving your answers in terms of π .

Total: 12

[4]

[5]

6. The function f is defined by

$$\mathbf{f}(x) \equiv 3 - x^2, x \in \mathbb{R}, x \ge 0.$$

- (a) State the range of f.
- (b) Sketch the graphs of y = f(x) and $y = f^{-1}$ on the same diagram.
- (c) Find an expression for f^{-1} and state its domain.

The function g is defined by

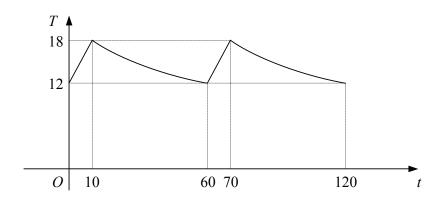
$$g(x) \equiv \frac{8}{3-x}, x \in \mathbb{R}, x \neq 3.$$

- (d) Evaluate fg(-3).
- (e) Solve the equation $f^{-1}(x) = g(x)$.

Total: 13

www.CasperYC.club

[2]


[3]

[1]

[3]

[4]

7. Figure shows a graph of the temperature of a room, $T^{\circ}C$, at time t minutes.

The temperature is controlled by a thermostat such that when the temperature falls to 12°C, a heater is turned on until the temperature reaches 18°C. The room then cools until the temperature again falls to 12°C.

For t in the interval $10 \le t \le 60$, T is given by

$$T = 5 + A \mathrm{e}^{-kt}.$$

where A and k are constants.

Given that T = 18 when t = 10 and that T = 12 when t = 60,

(a) show that k = 0.0124 to 3 significant figures and find the value of A, [6]

(b) find the rate at which the temperature of the room is decreasing when t = 20.

The temperature again reaches 18°C when t = 70 and the graph for $70 \le t \le 120$ is a translation of the graph for $10 \le t \le 60$.

(c) Find the value of the constant B such that for $70 \le t \le 120$

$$T = 5 + B \mathrm{e}^{-kt}.$$

Total: 13

[4]

[3]

Last updated: May 5, 2023