Pearson Edexcel

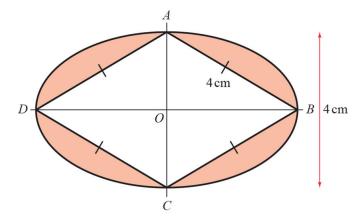
A Level Mathematics 9MA0

\mathbf{T}	_	• ,		
	110	it.	′ 🗀	act
•	JI.	LLU		ษอเ

6 Trignometry

Time allowed: 50 minutes

School:

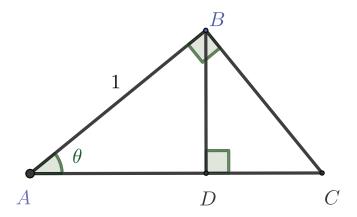

Name:

Teacher:

Question	Points	Score
1	8	
2	5	
3	6	
4	8	
5	4	
6	7	
7	12	
Total:	50	

1. Figure 1 shows a logo comprised of a rhombus surrounded by two arcs. Arc BAD has centre C and arc BCD has centre A. Some of the dimensions of the logo are shown in the diagram.

Prove that the shaded area of the logo is $\frac{2}{3}(16\pi - 24\sqrt{3})$.


- 2. (a) When θ is small, show that the expression $\frac{1+\sin(\theta)+\tan(2\theta)}{2\cos(3\theta)-1}$ can be written as $\frac{1}{1-3\theta}$. [4]
 - (b) Hence write down the value of $\frac{1+\sin(\theta)+\tan(2\theta)}{2\cos(3\theta)-1}$ when θ is small. [1]

Total: 5

- 3. (a) Prove that $\frac{\tan(x)-\sec(x)}{1-\sin(x)}=-\sec(x), \qquad x\neq (2n+1)\frac{\pi}{2}$
 - (b) Hence solve, in the interval $0 \le x \le 2\pi$, the equation $\frac{\tan(x) \sec(x)}{1 \sin(x)} = \sqrt{2}$. [3]

Total: 6

4. Figure below shows the right-angled triangles and $\triangle ABC$, $\triangle ABD$ and $\triangle BCD$, with AB=1 [8] and $\angle BAD=\theta$.

Prove that $1 + \tan^2(\theta) = \sec^2(\theta)$.

5. Solve $6\sin(\theta + 60) = 8\sqrt{3}\cos(\theta)$ in the range $0 \le \theta \le 360^{\circ}$.

[4]

[3]

Round your answer to 1 decimal place.

- 6. (a) Prove that $(\sin(3\theta) + \cos(3\theta))^2 \equiv 1 + \sin(6\theta)$.
 - (b) Use the result to solve, for $0 \le \theta \le \frac{\pi}{2}$, the equation $(\sin(3\theta) + \cos(3\theta)) = \sqrt{\frac{2+\sqrt{2}}{2}}$. [4]

Give your answer in terms of π . Check for extraneous solutions.

Total: 7

7. (a) Express $5\cos(\theta) - 8\sin(\theta)$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0 < \alpha < \pi$. [4] Write R in surd form and give the value of α correct to 4 decimal places.

The temperature of a kiln, $T^{\circ}C$, used to make pottery can be modelled by the equation

$$T = 1100 + 5\cos\left(\frac{x}{3}\right) - 8\sin\left(\frac{x}{3}\right),\,$$

for $0 \le x \le 72$, where x is the time in hours since the pottery was placed in the kiln.

- (b) Calculate the maximum value of T predicted by this model and the value of x, to 2 decimal places, when this maximum first occurs.
 - this [4]
- (c) Calculate the times during the first 24 hours when the temperature is predicted, by this model, to be exactly $1097^{\circ}C$.

Total: 12

