Pearson Edexcel

A Level Mathematics 9MA0

Unit Test

5 Binomial Theorem

Time allowed: 50 minutes

School:

Name:
Teacher:

Question	Points	Score
1	10	
2	6	
3	9	
4	12	
5	13	
Total:	50	

1. (a) Find the binomial expansion of $\frac{1+x}{\sqrt{1-2 x}}$ in ascending powers of x up to and including the x^{2} term, simplifying each term.
(b) State the set of values of x for which the expansion is valid.
(c) Show that when $x=\frac{1}{100}$, the exact value of $\frac{1+x}{\sqrt{1-2 x}}$ is $\frac{101 \sqrt{2}}{140}$.
(d) Substitute $x=\frac{1}{100}$ into the binomial expansion in part (a) and hence obtain an approximation to $\sqrt{2}$. Give your answer to 5 decimal places.
2. Given that in the expansion of $\frac{1}{(1+a x)^{2}}$, the coefficient of the x^{2} term is 75 find:
(a) the possible values of a,
(b) the corresponding coefficients of the x^{3} term.
3. The first three terms in the binomial expansion of $(a+b x)^{\frac{1}{3}}$ are

$$
4-\frac{1}{8} x+c x^{2}+\cdots
$$

(a) Find the values of a and b.
(b) State the range of values of x for which the expansion is valid.
(c) Find the value of c.
4.

$$
f(x)=\frac{6}{2+3 x}-\frac{4}{3-5 x}, \quad|x|<\frac{3}{5} .
$$

(a) Show that the first three terms in the series expansion of $f(x)$ can be written as

$$
\frac{5}{3}-\frac{121}{18} x+\frac{329}{108} x^{2}
$$

(b) Find the exact value of $f(0.01)$.

Round your answer to 7 decimal places.
(c) Find the percentage error made in using the series expansion in part (a) to estimate the value of $f(0.01)$.

Give your answer to 2 significant figures.
5.

$$
\frac{4 x^{2}-4 x-9}{(2 x+1)(x-1)} \equiv A+\frac{B}{2 x+1}+\frac{C}{x-1}
$$

(a) Find the values of the constants A, B and C.
(b) Hence, or otherwise, expand in ascending powers of x, as far as the x^{2} term.
(c) Explain why the expansion is not valid for $x=\frac{3}{4}$.

