Pearson Edexcel

A Level Mathematics 9MA0

Unit Test
 12 Vectors

Time allowed: 50 minutes

School:

Name:
Teacher:

Question	Points	Score
1	6	
2	6	
3	3	
4	10	
5	6	
6	9	
7	10	
Total:	50	

1. (a) The coordinates of A and B are $(-1,7, k)$ and $(4,1,10)$ respectively.

Given that the distance from A to B is $5 \sqrt{5}$ units, find the possible values of the constant k.
(b) For the larger value of k, find the unit vector in the direction of $\overrightarrow{O A}$.
2. A triangle has vertices $A(-2,0,-4), B(-2,4,-6)$ and $C(3,4,4)$. By considering the side lengths of the triangle, show that the triangle is a right-angled triangle.
3. Find the angle that the vector $\mathbf{a}=4 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$ makes with the positive y-axis.
4. (a) Show that in $\triangle K L M$ with $\overrightarrow{K L}=3 \mathbf{i}+0 \mathbf{j}-6 \mathbf{k}$ and $\overrightarrow{L M}=2 \mathbf{i}+5 \mathbf{j}+4 \mathbf{k}, \angle K L M=66.4^{\circ}$ to one decimal place.
(b) Hence find $\angle L K M$ and $\angle L M K$.
5. Given that

$$
(b-a) \mathbf{i}-2 a b c \mathbf{j}+2 \mathbf{k}=10 \mathbf{i}-96 \mathbf{j}+(7 a+5 b) \mathbf{k},
$$

find the values of a, b and c.
6. A particle of mass 3 kg is acted on by three forces, $F_{1}=(2 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k}) \mathrm{N}, F_{2}=(7 \mathbf{i}+8 \mathbf{k}) \mathrm{N}$ and $F_{3}=(-3 \mathbf{i}-3 \mathbf{j}-2 \mathbf{k}) \mathrm{N}$.
(a) Find the resultant force R acting on the particle.
(b) Find the acceleration of the particle, giving your answer in the form $(p \mathbf{i}+q \mathbf{j}+r \mathbf{k}) \mathrm{ms}^{-2}$.
(c) Find the magnitude of the acceleration.
(d) Given that the particle starts at rest, find the exact distance travelled by the particle in the
(d) Give first 10s.
7. The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and $G . \mathbf{a}, \mathbf{b}$ and \mathbf{c} are the vectors $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ respectively. The points M and N lie on $O A$ such that $O M: M N: N A=$ 1:2:1. The points K and L lie on $E F$ such that $E K: K L: L F=1: 2: 1$.

Prove that the diagonals $K N$ and $M L$ bisect each other at P.

