Pearson Edexcel

A Level Mathematics 9MA0

Unit Test

11 Integration - 2

Time allowed: 50 minutes

School:

Name:
Teacher:

Question	Points	Score
1	7	
2	11	
3	10	
4	10	
5	12	
Total:	50	

1. The diagram shows part of the curve with equation $y=x \sin ^{2}(x)$. The finite region bounded by the line with equation $x=\frac{\pi}{2}$, the curve and the x-axis is shown shaded in the diagram. Find the area of the shaded region.

2. The diagram shows the curve with equation $y=\frac{1}{2} x^{3} \sqrt{4-x^{2}}$.

(a) Complete the table with the value of y corresponding to $x=1.5$. Give your answer correct to 5 decimal places.

x	0	0.5	1	1.5	2
y	0	0.12103	0.86603		0

Given that

$$
I=\int_{0}^{2} \frac{1}{2} x^{3} \sqrt{4-x^{2}} \mathrm{~d} x
$$

(b) Use the trapezium rule with 4 equal width strips to find an approximate value of I, giving your answer to 4 significant figures.
(c) By using an appropriate substitution, or otherwise, find the exact value of I, leaving your answer as a rational number in its simplest form.
(d) Suggest one way in which your estimate using a trapezium rule could be improved.
3.

$$
f(x)=\frac{21-14 x}{(1-4 x)(2 x+3)}, x \neq \frac{1}{4}, x \neq-\frac{3}{2} .
$$

(a) Given that

$$
f(x)=\frac{A}{1-4 x}+\frac{B}{2 x+3},
$$

find the values of the constants A and B.
(b) Find the exact value of $\int_{-1}^{0} f(x) \mathrm{d} x$.
4. The value of a computer, V, decreases over time, t, measured in years. The rate of decrease of the value is proportional to the remaining value.
(a) Given that the initial value of the computer is V_{0}, show that

$$
V=V_{0} \mathrm{e}^{-k t} .
$$

After 10 years the value of the computer is $\frac{1}{5} V_{0}$.
(b) Find the exact value of k.
(c) How old is the computer when its value is only 5% of its original value? Give your answer to 3 significant figures.
5. A large cylindrical tank has radius 40 m . Water flows into the cylinder from a pipe at a rate of $4000 \pi \mathrm{~m}^{3} \mathrm{~min}^{-1}$. At time t, the depth of water in the tank is $h \mathrm{~m}$. Water leaves the bottom of the tank through another pipe at a rate of $50 \pi h \mathrm{~m}^{3} \mathrm{~min}^{-1}$.
(a) Show that t minutes after water begins to flow out of the bottom of the cylinder,

$$
160 \frac{\mathrm{~d} h}{\mathrm{~d} t}=400-5 h
$$

(b) When $t=0 \mathrm{~min}, h=50 \mathrm{~m}$.

Find the exact value of t when $h=60 \mathrm{~m}$.

