Pearson Edexcel

A Level Mathematics 9MA0

Unit Test

1 Proof

Time allowed: 50 minutes

School:

Name:
Teacher:

Question	Points	Score
1	4	
2	3	
3	5	
4	5	
5	4	
6	4	
7	4	
8	5	
9	10	
10	6	
Total:	50	

1. It is suggested that the sequence $a_{k}=2^{k}+1, k \geq 1$ produces only prime numbers.
(a) Show that a_{1}, a_{2} and a_{4} produce prime numbers.
(b) Prove by counter example that the sequence does not always produce a prime number.
2. Prove by exhaustion that

$$
1+2+3+\cdots+n \equiv \frac{n(n+1)}{2}
$$

for positive integers from 1 to 6 inclusive.
3. Use proof by contradiction to prove the statement: 'The product of two odd numbers is odd.'
4. Prove by contradiction that if n is odd, $n^{3}+1$ is even.
5. Use proof by contradiction to show that there exist no integers a and b for which $25 a+15 b=1$.
6. Use proof by contradiction to show that there is no greatest positive rational number.
7. Use proof by contradiction to show that, given a rational number a and an irrational number b, $a-b$ is irrational.
8. Use proof by contradiction to show that there are no positive integer solutions to the statement $x^{2}-y^{2}=1$.
9. (a) Use proof by contradiction to show that if n^{2} is an even integer then n is also an even integer.
(b) Prove that $\sqrt{2}$ is irrational.
10. Prove by contradiction that there are infinitely many prime numbers.

