Pearson Edexcel

A Level Mathematics 9MA0

Unit Test

1 Proof

Time allowed: 50 minutes

School:

Name:

Teacher:

Question	Points	Score
1	4	
2	3	
3	5	
4	5	
5	4	
6	4	
7	4	
8	5	
9	10	
10	6	
Total:	50	

- 1. It is suggested that the sequence $a_k = 2^k + 1, k \ge 1$ produces only prime numbers.
 - (a) Show that a_1, a_2 and a_4 produce prime numbers.

[2]

[2]

(b) Prove by counter example that the sequence does not always produce a prime number.

Total: 4

[3]

2. Prove by exhaustion that

$$1 + 2 + 3 + \dots + n \equiv \frac{n(n+1)}{2}$$

Last updated: June 10, 2020

for positive integers from 1 to 6 inclusive.

[5]

3. Use proof by contradiction to prove the statement: 'The product of two odd numbers is odd.'

[5]

4. Prove by contradiction that if n is odd, $n^3 + 1$ is even.

[4]

5. Use proof by contradiction to show that there exist no integers a and b for which 25a + 15b = 1.

[4]

6. Use proof by contradiction to show that there is no greatest positive rational number.

[4]

7. Use proof by contradiction to show that, given a rational number a and an irrational number b, a-b is irrational.

Last updated: June 10, 2020

8. Use proof by contradiction to show that there are no positive integer solutions to the statement $x^2 - y^2 = 1$.

Last updated: June 10, 2020

statement [5]

9. (a) Use proof by contradiction to show that if n^2 is an even integer then n is also an even integer. [4]

Last updated: June 10, 2020

(b) Prove that $\sqrt{2}$ is irrational.

[6]

Total: 10

[6]

10. Prove by contradiction that there are infinitely many prime numbers.

