Pearson Edexcel Level 3 GCE Mathematics 9MA0

Practice Paper E

Pure Mathematics

Time allowed: 2 hours

Centre:

Name:

Teacher:

Question	Points	Score
1	3	
2	5	
3	9	
4	5	
5	6	
6	8	
7	7	
8	9	
9	4	
10	4	
11	9	
12	10	
13	10	
14	11	
Total:	100	

[3]

1.	Prove by exhaustion that
	$1+2+3+\ldots+n \equiv \frac{n(n+1)}{2}$
	for positive integers from 1 to 6 inclusive.

(a) When θ is small, show that the equation $\frac{1+\sin(\theta)+\tan(2\theta)}{2\cos(3\theta)-1}$ can be written as $\frac{1}{1-3\theta}$.	
(b) Hence write down the value of $\frac{1+\sin(\theta)+\tan(2\theta)}{2\cos(3\theta)-1}$ when θ is small.	
	Total
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

3.	A stone is thrown from the top of a building. The path of the stone can be modelled using the	Э
	parametric equations $x = 10t, y = 8t - 4.9t^2 + 10, t \ge 0$, where x is the horizontal distance from	1
	the building in metres and y is the vertical height of the stone above the level ground in metres	
	(a) Find the horizontal distance the stone travels before hitting the ground.	[4]
	(b) Find the greatest vertical height.	[5]
		Total: 9
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

4	Given	that	r	=	sect	(4u)		fine
4.	Given	unau	ω	_	Seci	$(\pm y)$	١,	$_{\rm IIIIC}$

(a) $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of y.

[2]

(b) Show that

Total: 5

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{k}{x\sqrt{x^2 - 1}}$$

where k is a constant which should be found.

[3]

5.

$$f(x) = \frac{6}{x} + \frac{3}{x^2} - 7x^{\frac{5}{2}}.$$

- (a) Find $\int f(x) dx$. [3]
- (b) Evaluate

$$\int_4^9 f(x) \, \mathrm{d}x,$$

giving your answer in the form $m + n \ln(p)$, where m, n and p are rational numbers.

Total: (
_

6. Figure 1 shows a sketch of part of the graph y = f(x) where f(x) = 3|x - 4| - 5.

Figure 1:

(a) State the range of f.

[1]

[7]

(b) Given that $f(x) = -\frac{1}{3}x + k$, where k is a constant has two distinct roots, state the possible values of k.

Total: 8

[7]

7.

$$f(x) \equiv \frac{9x^2 + 25x + 16}{9x^2 - 16}$$

Show that f(x) can be written in the form

$$A + \frac{B}{3x - 4} + \frac{C}{3x + 4},$$

where A, B and C are constants to be found.

8.	A ball is dropped from a height of 80 cm. After each bounce it rebounds to 70% of its previous	
	maximum height.	
	(a) Write a recurrence relation to model the maximum height in centimetres of the ball after	[2]
	each subsequent bounce.	
	(b) Find the height to which the ball will rebound after the fifth bounce.	[2]
	(c) Find the total vertical distance travelled by the ball before it stops bouncing.	[4]
	(d) State one limitation with the model.	[1]
		Total: 9

Solve	_	
	$6\sin(\theta + 60) = 8\sqrt{3}\cos(\theta)$	
in the range $0 \le \theta \le 36$	50°. Round your answer to 1 decimal place.	

Use proof by contradiction to show that there is no greatest positive rational number.						

11.	The first three terms in the binomial expansion of $(a + bx)^{\frac{1}{3}}$ are $4 - \frac{1}{8}x + cx^2 + \dots$						
	(a) Find the values of a and b .	[5]					
	(b) State the range of values of x for which the expansion is valid.	[2]					
	(c) Find the value of c .	[2]					
		Total: 9					

[10]

12. The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G. a, b and c are the vectors $\overrightarrow{OA}, \overrightarrow{OB}$ and \overrightarrow{OC} respectively. The points M and N lie on \overrightarrow{OA} such that OM:MN:NA=1:2:1. The points K and L lie on EF such that EK:KL:LF=1:2:1.

Figure 2:

Prove that the diagonals KN and ML bisect each other at P .						

[3]

[3]

10

13.	The value of a computer, V , decreases over time, t , measured in years.							
	The rate of decrease of the value is proportional to the remaining value.							
	Given that the initial value of the computer is V_0 ,							
	(a) Show that $V = V_0 e^{-kt}$.							
	(b) After 10 years the value of the computer is $\frac{1}{5}V_0$. Find the exact value of k .							
	(c) How old is the computer when its value is only 5% of its original value?							
	Give your answer to 3 significant figures.							
		Total:						

14.

$$p(t) = \frac{1}{10}\ln(t+1) - \cos\left(\frac{t}{2}\right) + \frac{1}{10}t^{\frac{3}{2}} + 199.3, \quad 0 \le t \le 12.$$

Figure 3 is a graph of the price of a stock during a 12-hour trading window. The equation of the curve is given above.

- (a) Show that the price reaches a local maximum in the interval 8.5 < t < 8.6.
- (b) Figure 3 shows that the price reaches a local minimum between 9 and 11 hours after trading begins. Using the Newton–Raphson procedure once and taking $t_0 = 9.9$ as a first approximation, find a second approximation of when the price reaches a local minimum.

			Total: 1

[5]

[6]

(Q14 contined)			
-			
-			
-			
_			

