Pearson Edexcel Level 3	Question	Points	Score
GCE Mathematics 9MA0	1	5	
Practice Paper D	2	10	
Pure Mathematics	3	6	
	4	6	
Time allowed: 2 hours	5	5	
Time anowed. 2 nours	6	7	
	7	7	
Control	8	8	
Centre:	9	8	
Name:	10	9	
Teacher:	11	5	
	12	10	
	13	14	
	Total:	100	

[5]

1. Given that

$$\frac{x^2 - 36}{x^2 - 11x + 30} \times \frac{25 - x^2}{Ax^2 + Bx + C} \times \frac{6x^2 + 7x - 3}{3x^2 + 17x - 6} \equiv \frac{x + 5}{6 - x},$$

find the values of the constants A, B and C, where A, B and C are integers.

www.CasperYC.club

_			_
	(a)	Use proof by contradiction to show that if n^2 is an even integer then n is also an even integer.	1
	(b)	Prove that $\sqrt{2}$ is irrational.	
			Total
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_

Ū	\mathcal{Z}	R	
		С,	
	4	Ť	
	2267		6

Page 3 of 13

www.CasperYC.club

4. (a) Given that $f(x) = \sin(x)$, show that

$$f'(x) = \lim_{h \to 0} \left(\frac{\cos(h-1)}{h} \sin(x) + \frac{\sin(h)}{h} \cos(x) \right)$$

(b) Hence prove that $f'(x) = \cos(x)$.

Total: 6

www.CasperYC.club

Last updated: June 10, 2020

[2]

[4]

5. Given that

$$\int_{a}^{4} (10 - 2x)^4 \, \mathrm{d}x = \frac{211}{10},$$

find the value of a.

[5]

6.

$$f(x) = x^4 - 8x^2 + 2.$$

- (a) Show that the equation f(x) = 0 can be written as $x = \sqrt{ax^4 + b}$, x > 0, where a and b are [2] constants to be found.
- (b) Let $x_0 = 1.5$. Use the iteration formula $x_{n+1} = \sqrt{ax_n^4 + b}$, together with your values of a [2] and b from part (a), to find, to 4 decimal places, the values of x_1, x_2, x_3 and x_4 .
- (c) A root of f(x) = 0 is α . By choosing a suitable interval, prove that $\alpha = -2.782$ to 3 decimal [3] places.

Total: 7

7. The functions f and g are defined by $f(x) = e^{2x} + 4, x \in \mathbb{R}$ and $g(x) = e^{2x} + 4$.	$x = \ln(x+1), x \in \mathbb{R}, x > -1.$
---	---

- (a) Find fg(x) and state its range.
- (b) Solve fg(x) = 85.

- [4]
- [3]
- Total: 7

TAO Practice Paper D – Pure Mathematics	Page 8 of 13	
For an arithmetic sequence $a_4 = 98$ and $a_{11} = 56$.		
(a) Find the value of the 20th term.		
(b) Given that the sum of the first n terms is 78, find the value of n .		
		Total

9. Figure 1 shows the right-angled triangles $\triangle ABC, \triangle ABD$ and $\triangle BDC$, with AB = 1 and [8] $\angle BAD = \theta$.

Prove that $1 + \tan^2(\theta) = \sec^2(\theta)$.

www.CasperYC.club

- 10. A particle of mass 3kg is acted on by three forces, $F_1 = (2i + 6j 3k)N$, $F_2 = (7i + 8k)N$ and $F_3 = (-3i 3j 2k)N$.
 - (a) Find the resultant force R acting on the particle.
 - (b) Find the acceleration of the particle, giving your answer in the form (pi + qj + rk)ms⁻².
 - (c) Find the magnitude of the acceleration.
 - (d) Given that the particle starts at rest, find the exact distance travelled by the particle in the [3] first 10s.

Total: 9

[2]

[2]

[2]

11. Find the values of the constants A, B, C, D and E in the following identity:

$$5x^{4} - 4x^{3} + 17x^{2} - 5x + 7 \equiv (Ax^{2} + Bx + C)(x^{2} + 2) + Dx + E$$

www.CasperYC.club

Last updated: June 10, 2020

[5]

12.

$$f(x) = \frac{21 - 14x}{(1 - 4x)(2x + 3)}, \quad x \neq \frac{1}{4}, x \neq -\frac{3}{2}.$$

$$f(x) = \frac{21 - 14x}{(1 - 4x)(2x + 3)}, \quad x \neq \frac{1}{4}, x \neq -\frac{3}{2}.$$

- (a) Given that $f(x) = \frac{A}{1-4x} + \frac{B}{2x+3}$, find the values of the constants A and B.
- (b) Find the exact value of $\int_{-1}^{0} f(x) dx$.

Total: 10

[5]

[5]

13. Figure 2 shows the curve C with parametric equations $x = t + 2, y = \frac{t-1}{t-2}, t \neq -2$. The curve passes through the x-axis at P.

Figure 2:

(a) Find the coordinate of P. [2]
(b) Find the cartesian equation of the curve. [2]
(c) Find the equation of the normal to the curve at the point t = -1. Give your answer in the form ax + by + c = 0. [6]
(d) Find the coordinates of the point where the normal meets C. [4]
Total: 14

www.CasperYC.club