Pearson Edexcel Level 3 GCE Mathematics 9MA0

Practice Paper D

Pure Mathematics

Time allowed: 2 hours

Centre:

Name:
Teacher:

Question	Points	Score
1	5	
2	10	
3	6	
4	6	
5	5	
6	7	
7	7	
8	8	
9	8	
10	9	
11	5	
12	10	
13	14	
Total:	100	

1. Given that

$$
\frac{x^{2}-36}{x^{2}-11 x+30} \times \frac{25-x^{2}}{A x^{2}+B x+C} \times \frac{6 x^{2}+7 x-3}{3 x^{2}+17 x-6} \equiv \frac{x+5}{6-x},
$$

find the values of the constants A, B and C, where A, B and C are integers.
\qquad
2. (a) Use proof by contradiction to show that if n^{2} is an even integer then n is also an even integer.
(b) Prove that $\sqrt{2}$ is irrational.
\qquad

3．Given that in the expansion of $\frac{1}{(1+a x)^{2}}$ the coefficient of the x^{2} term is 75 ，find
（a）the possible values of a ，
（b）the corresponding coefficients of the x^{3} term．
\qquad
\qquad \longrightarrow 回要昰回
4. (a) Given that $f(x)=\sin (x)$, show that

$$
f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{\cos (h-1)}{h} \sin (x)+\frac{\sin (h)}{h} \cos (x)\right)
$$

(b) Hence prove that $f^{\prime}(x)=\cos (x)$.
\qquad
5. Given that

$$
\int_{a}^{4}(10-2 x)^{4} \mathrm{~d} x=\frac{211}{10}
$$

find the value of a.
\qquad
6.

$$
f(x)=x^{4}-8 x^{2}+2 .
$$

(a) Show that the equation $f(x)=0$ can be written as $x=\sqrt{a x^{4}+b}, x>0$, where a and b are constants to be found.
(b) Let $x_{0}=1.5$. Use the iteration formula $x_{n+1}=\sqrt{a x_{n}^{4}+b}$, together with your values of a and b from part (a), to find, to 4 decimal places, the values of x_{1}, x_{2}, x_{3} and x_{4}.
(c) A root of $f(x)=0$ is α. By choosing a suitable interval, prove that $\alpha=-2.782$ to 3 decimal places.
\qquad
7. The functions f and g are defined by $f(x)=\mathrm{e}^{2 x}+4, x \in \mathbb{R}$ and $g(x)=\ln (x+1), x \in \mathbb{R}, x>-1$.
(a) Find $f g(x)$ and state its range.
(b) Solve $f g(x)=85$.
\qquad
8. For an arithmetic sequence $a_{4}=98$ and $a_{11}=56$.
(a) Find the value of the 20th term.
(b) Given that the sum of the first n terms is 78, find the value of n.
\qquad
\qquad \square 回回
9. Figure 1 shows the right-angled triangles $\triangle A B C, \triangle A B D$ and $\triangle B D C$, with $A B=1$ and $\angle B A D=\theta$.

Figure 1:

Prove that $1+\tan ^{2}(\theta)=\sec ^{2}(\theta)$.
\qquad
10. A particle of mass 3 kg is acted on by three forces, $F_{1}=(2 i+6 j-3 k) \mathrm{N}, F_{2}=(7 i+8 k) \mathrm{N}$ and $F_{3}=(-3 i-3 j-2 k) N$.
(a) Find the resultant force R acting on the particle.
(b) Find the acceleration of the particle, giving your answer in the form $(p i+q j+r k) \mathrm{ms}^{-2}$.
(c) Find the magnitude of the acceleration.
(d) Given that the particle starts at rest, find the exact distance travelled by the particle in the first 10s.

Total: 9
\qquad
11. Find the values of the constants A, B, C, D and E in the following identity:

$$
5 x^{4}-4 x^{3}+17 x^{2}-5 x+7 \equiv\left(A x^{2}+B x+C\right)\left(x^{2}+2\right)+D x+E .
$$

12.

$$
f(x)=\frac{21-14 x}{(1-4 x)(2 x+3)}, \quad x \neq \frac{1}{4}, x \neq-\frac{3}{2} .
$$

(a) Given that $f(x)=\frac{A}{1-4 x}+\frac{B}{2 x+3}$, find the values of the constants A and B.
(b) Find the exact value of $\int_{-1}^{0} f(x) \mathrm{d} x$.
\qquad
13. Figure 2 shows the curve C with parametric equations $x=t+2, y=\frac{t-1}{t-2}, t \neq-2$. The curve passes through the x-axis at P.

Figure 2:
(a) Find the coordinate of P.
(b) Find the cartesian equation of the curve.
(c) Find the equation of the normal to the curve at the point $t=-1$. Give your answer in the form $a x+b y+c=0$.
(d) Find the coordinates of the point where the normal meets C.
\qquad

