Pearson Edexcel Level 3 GCE Mathematics 9MA0

Practice Paper B

Pure Mathematics

Time allowed: 2 hours

Centre:

Name:
Teacher:

Question	Points	Score
1	5	
2	5	
3	6	
4	8	
5	6	
6	8	
7	6	
8	4	
9	9	
10	10	
11	10	
12	11	
13	12	
Total:	100	

1. Use proof by contradiction to prove the statement: 'The product of two odd numbers is odd.'
\qquad

2. (a) Prove that the sum of the first n terms of an arithmetic series is

$$
S=\frac{n}{2}(2 a+(n-1) d) .
$$

(b) Hence, or otherwise, find the sum of the first 200 odd numbers.
\qquad
3. A curve has the equation $y=\ln (3 x)-\mathrm{e}^{-2 x}$.

Show that the equation of the tangent at the point with an x-coordinate of 1 is

$$
y=\left(\frac{\mathrm{e}^{2}+2}{\mathrm{e}^{2}}\right) x-\left(\frac{\mathrm{e}^{2}+3}{\mathrm{e}^{2}}\right)+\ln (3) .
$$

4. The curve C has parametric equations

$$
x=7 \sin (t)-4, \quad y=7 \cos (t)+3, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{3} .
$$

(a) Show that the cartesian equation of C can be written as

$$
(x+a)^{2}+(y+b)^{2}=c
$$

where a, b and c are integers which should be stated.
(b) Sketch the curve C on the given domain, clearly stating the endpoints of the curve.
(c) Find the length of C. Leave your answer in terms of π.
\qquad

5．The coordinates of A and B are $(-1,7, k)$ and $(4,1,10)$ respectively．
Given that the distance from A to B is $5 \sqrt{5}$ units，
（a）find the possible values of the constant k ．
（b）For the larger value of k ，find the unit vector in the direction of $\overrightarrow{O A}$ ．
\qquad
\qquad \longrightarrow 回回
6. Given that

$$
\int_{\ln (2)}^{\ln (b)} \frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}-1} \mathrm{~d} x=\ln (4)
$$

find the value of b showing each step in your working.
\qquad
7. A sequence is given by

$$
x_{1}=4, \quad x_{n+1}=p x_{n}-9
$$

where p is an integer.
(a) Show that $x_{3}=4 p^{2}-9 p-9$.
(b) Given that $x_{3}=46$, find the value of p.
(c) Hence find the value of x_{5}.
\qquad
8. Express $\frac{6}{4 x^{2}+8 x-5}+\frac{3 x+1}{2 x-1}$ as a single fraction in its simplest form.
\qquad
9. The diagram shows the graph of $h(x)$.

The points $A(-4,3)$ and $B(2,-6)$ are turning points on the graph and $C(0,-5)$ is the y-intercept. Sketch on separate diagrams, the graphs of
(a) $y=|f(x)|$
(b) $y=f(|x|)$
(c) $y=2 f(x+3)$

Where possible, label clearly the transformations of the points A, B and C on your new diagrams and give their coordinates.
\qquad
10.

$$
g(x)=\frac{2}{x-1}-\mathrm{e}^{x} .
$$

(a) By drawing an appropriate sketch, show that there is only one solution to the equation $g(x)=0$.
(b) Show that the equation $g(x)=0$ may be written in the form $x=2 \mathrm{e}^{-x}+1$.
(c) Let $x_{0}=1.5$. Use the iterative formula $x_{n+1}=2 \mathrm{e}^{-x_{n}}+1$ to find to 4 decimal places the values of x_{1}, x_{2}, x_{3} and x_{4}.
(d) Using $x_{0}=1.5$ as a first approximation, apply the Newton-Raphson procedure once to $g(x)$ to find a second approximation to α, giving your answer to 4 decimal places.

Total: 10
\qquad
11. (a) Find the binomial expansion of $\frac{1+x}{\sqrt{1-2 x}}$ in ascending powers of x up to and including the x^{2} term, simplifying each term.
(b) State the set of values of x for which the expansion is valid.
(c) Show that when $x=\frac{1}{100}$, the exact value of $\frac{1+x}{\sqrt{1-2 x}}$ is $\frac{101 \sqrt{2}}{140}$.
(d) Substitute $x=\frac{1}{100}$ into the binomial expansion in part (a) and hence obtain an approximation to $\sqrt{2}$. Give your answer to 5 decimal places.
\qquad
12. The diagram shows the curve with equation $y=\frac{1}{2} x^{2} \sqrt{4-x^{2}}$.

(a) Complete the table with the value of y corresponding to $x=1.5$.

Give your answer correct to 5 decimal places.

x	0	0.5	1	1.5	2
y	0	0.12103	0.86603		0

(b) Given that

$$
I=\int_{0}^{2} \frac{1}{2} x^{3} \sqrt{4-x^{2}} \mathrm{~d} x
$$

use the trapezium rule with 4 equal width strips to find an approximate value of I, giving your answer to 4 significant figures.
(c) By using an appropriate substitution, or otherwise, find the exact value of

$$
\int_{0}^{2} \frac{1}{2} x^{3} \sqrt{4-x^{2}} \mathrm{~d} x
$$

leaving your answer as a rational number in its simplest form.
(d) Suggest one way in which your estimate using a trapezium rule could be improved.
(Q12 continued)
\qquad
\longrightarrow 回回
13. (a) Express $5 \cos (\theta)-8 \sin (\theta)$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0<\alpha<\pi$.

Write R in surd form and give the value of α correct to 4 decimal places.
(b) The temperature of a kiln, $T^{\circ} \mathrm{C}$, used to make pottery can be modelled by the equation

$$
T=1100+5 \cos \left(\frac{x}{3}\right)-8 \sin \left(\frac{x}{3}\right), \quad 0 \leq x \leq 72
$$

where x is the time in hours since the pottery was placed in the kiln.

Calculate the maximum value of T predicted by this model and the value of x, to 2 decimal places, when this maximum first occurs.
(c) Calculate the times during the first 24 hours when the temperature is predicted, by this model, to be exactly $1097^{\circ} \mathrm{C}$.

Total: 12
\qquad

