Pearson Edexcel Level 3
GCE Mathematics 9MA0

Practice Paper A

Pure Mathematics

Time allowed: 2 hours

Centre:
Name:

Teacher:

Question	Points	Score
1	4	
2	3	
3	5	
4	4	
5	7	
6	8	
7	8	
8	8	
9	9	
10	4	
11	10	
12	7	
13	12	
14	4	
15	7	
Total:	100	

1. It is suggested that the sequence $a_{k}=2^{k}+1, k \ldots, n$ produces only prime numbers.
(a) Show that a_{1}, a_{2} and a_{4} produce prime numbers.
(b) Prove by counter example that the sequence does not always produce a prime number.
\qquad

2. Find the angle that the vector $a=4 i-j+3 k$ makes with the positive y-axis.
\qquad
\qquad \longrightarrow 回回
3.

$$
g(x)=3 \sin \left(\left(\frac{x}{6}\right)^{3}\right)-\frac{1}{10} x-1, \quad-40<x<20
$$

x is in radians.
(a) Show that the equation $g(x)=0$ can be written as

$$
x=6 \sqrt[3]{\arcsin \left(\frac{1}{3}+\frac{1}{30} x\right)}
$$

(b) Using the formula

$$
x_{n+1}=6 \sqrt[3]{\arcsin \left(\frac{1}{3}+\frac{1}{30} x_{n}\right)}
$$

$x_{0}=4$, find, to 3 decimal places, the value of x_{1}, x_{2} and x_{3}.
\qquad

4．The first 3 terms of a geometric sequence are

$$
k+2,4 k, 2 k^{2}, k>0
$$

Find the value of k ．
\qquad
\longrightarrow 回回茴
5.

$$
f(x)=\frac{x^{4}+2 x^{3}-29 x^{2}-47 x+77}{x^{2}-2 x-15}
$$

Show that $f(x)$ can be written as

$$
P x^{2}+Q x+R+\frac{V}{x+3}+\frac{W}{x-5}
$$

and find the values of P, Q, R, V and W.
\qquad
6. Figure 1 shows a logo comprised of a rhombus surrounded by two arcs. Arc $B A D$ has centre C and $\operatorname{arc} B C D$ has centre A.

Some of the dimensions of the logo are shown in the diagram.

Figure 1:

Prove that the shaded area of the logo is $\frac{2}{3}(16 \pi-24 \sqrt{3})$.
\qquad
7. C has parametric equations

$$
x=\frac{1+4 t}{1-t}, \quad y=\frac{2+b t}{1-t}, \quad-1 \leq t \leq 0 .
$$

(a) Show that the cartesian equation of C is

$$
y=\left(\frac{2+b}{5}\right) x+\frac{8-b}{5}
$$

over an appropriate domain.
(b) Given that C is a line segment and that the gradient of the line is -1 , show that the length of the line segment is $a \sqrt{2}$, where a is a rational number to be found.
\qquad
8. A toy soldier is connected to a parachute. The soldier is thrown into the air from ground level. The height, in metres, of the soldier above the ground can be modelled by the equation

$$
H=\frac{4 t^{\frac{2}{3}}}{t^{2}+1}, \quad 0 \leq t \leq 6 s
$$

where H is height of the soldier above the ground and t is the time since the soldier was thrown.
(a) Show that

$$
\frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{8\left(1-2 t^{2}\right)}{3 \sqrt[3]{t}\left(t^{2}+1\right)^{2}}
$$

(b) Using the differentiated function, explain whether the soldier was increasing or decreasing in height after 2 seconds.
(c) Find the exact time when the soldier reaches a maximum height.
\qquad
9. (a) Show that

$$
\tan ^{4}(x)=\sec ^{2}(x) \tan ^{2}(x)+1-\sec ^{2}(x) .
$$

(b) Hence find the exact value of

$$
\int_{0}^{4 \pi} \tan ^{4}(x) \mathrm{d} x
$$

\qquad

10．Use proof by contradiction to show that，given a rational number a and an irrational number b ， $a-b$ is irrational．
\qquad
\qquad \longrightarrow 回回要
11.

$$
f(x)=|2 x+3|-4, \quad x \in \mathbb{R} .
$$

(a) Sketch the graph of $y=f(x)$, labelling its vertex and any points of intersection with the coordinate axes.
(b) Find the coordinates of the points of intersection of $y=|2 x+3|-4$ and $y=-\frac{1}{4} x+2$.
\qquad
12. (a) Prove that $(\sin (3 \theta)+\cos (3 \theta))^{2}=1+\sin (6 \theta)$.
(b) Use the result to solve, for $0 \leq \theta \leq \frac{\pi}{2}$, the equation

$$
\sin (3 \theta)+\cos (3 \theta)=\sqrt{\frac{2+\sqrt{2}}{2}}
$$

Give your answer in terms of π. Check for extraneous solutions.
\qquad
13.

$$
f(x)=\frac{6}{2+3 x}-\frac{4}{3-5 x}, \quad|x|<\frac{3}{5} .
$$

（a）Show that the first three terms in the series expansion of $f(x)$ can be written as

$$
\frac{5}{3}-\frac{121}{18} x+\frac{329}{108} x^{2} .
$$

（b）Find the exact value of $f(0.01)$ ．Round your answer to 7 decimal places．
（c）Find the percentage error made in using the series expansion in part（a）to estimate the value of $f(0.01)$ ．

Give your answer to 2 significant figures．
\qquad
14. Jacob is making some patterns out of squares. The first 3 patterns in the sequence are shown in Figure 2.

Figure 2:
(a) Find an expression, in terms of n, for the number of squares required to make pattern n.
(b) Jacob uses a total of 948 squares in constructing the first k patterns.

Show that $3 k^{2}+7 k-1896=0$.
Total: 4
\qquad
15. Figure 3 shows part of the curve with equation $y=x \sin ^{2}(x)$. The finite region bounded by the line with equation $x=\frac{\pi}{2}$, the curve and the x-axis is shown shaded in the diagram.

Figure 3:

Find the area of the shaded region.
\qquad

