8MA0 Unit Test

Mechanics - Variable Acceleration

Time allowed: 45 minutes

Centre:

Name:
Teacher:

Question	Points	Score
1	10	
2	7	
3	7	
4	8	
5	5	
6	13	
Total:	50	

How I can achieve better:

1. A body moves in a straight line such that its velocity, $v \mathrm{~ms}^{-1}$, at time $t \mathrm{~s}$ is given by

$$
v=-\frac{1}{3}\left(2 t^{2}-9 t-18\right), \quad t \geq 0
$$

(a) Find the initial velocity of the body.
(b) Find the value of t when the body is instantaneously at rest.
(c) Find the greatest speed of the body in the first seven seconds of motion.
2. A particle P moves in a straight line. At time $t \mathrm{~s}$ the displacement $s \mathrm{~cm}$ from a fixed point O is given by

$$
s=\frac{1}{6}\left(8 t^{3}-105 t^{2}+144 t+540\right) .
$$

Find the distance between the points at which the particle is instantaneously at rest.
3. A particle P moves along a straight line. Initially, P is at rest at a point O on the line.

At time $t \mathrm{~s}$, the velocity of P is $v \mathrm{~ms}^{-1}$, where

$$
v=\frac{1}{20} t(5-t)^{2}, \quad 0 \leq t \leq 8
$$

(a) Sketch a velocity-time graph for the motion of P.
(b) Find the values of t and the corresponding values of v when the acceleration of P is instantaneously zero.
4. A particle P travels in a straight line.

At time $t \mathrm{~s}$, the displacement of P from a point O on the line is $s \mathrm{~m}$.
At time $t \mathrm{~s}$, the acceleration of P is $(12 t-4) \mathrm{ms}^{-2}$.
When $t=1, s=2$ and when $t=3, s=30$.
Find the displacement when $t=2$.
5. A sled is moving down a steep hill in a straight line.

At time $t \mathrm{~s}$, the acceleration of the sled is $a \mathrm{~ms}^{-2}$ where

$$
a=\frac{1}{500}\left(20 t^{2}-t^{3}\right), \quad 0 \leq t \leq 20
$$

When $t=0$ the sled is at rest at the top of the hill.
Find the distance the sled travels in the first 10s of its motion.
6. A car starts from the point A. At time $t \mathrm{~s}$ after leaving A, the distance of the car from A is s m , where

$$
s=30 t-0.4 t^{2}, \quad 0 \leq t \leq 25
$$

The car reaches the point B when $t=25$.
(a) Find the distance $A B$.
(b) Show that the car travels with a constant acceleration and state the value of this acceleration.

A runner passes through B when $t=0$ with an initial velocity of $2 \mathrm{~ms}^{-1}$ running directly towards A. The runner has a constant acceleration of $0.1 \mathrm{~ms}^{-2}$.
(c) Find the distance from A at which the runner and the car pass one another.

