8MA0 Unit Test

Mechanics – Variable Acceleration

Time allowed: 45 minutes

	Question	Points	Score
Centre:	1	10	
Name:	2	7	
Teacher:	3	7	
	4	8	
	5	5	
	6	13	
	Total:	50	

Γ

How I can achieve better:

- •

1. A body moves in a straight line such that its velocity, $v \text{ ms}^{-1}$, at time t s is given by

$$v = -\frac{1}{3} \left(2t^2 - 9t - 18 \right), \qquad t \ge 0.$$

- (a) Find the initial velocity of the body.
- (b) Find the value of t when the body is instantaneously at rest. [3]
- (c) Find the greatest speed of the body in the first seven seconds of motion.

Total: 10

[2]

[5]

2. A particle P moves in a straight line. At time t s the displacement s cm from a fixed point O is given by

$$s = \frac{1}{6} \left(8t^3 - 105t^2 + 144t + 540 \right).$$

Find the distance between the points at which the particle is instantaneously at rest.

3. A particle P moves along a straight line. Initially, P is at rest at a point O on the line. At time t s, the velocity of P is $v \text{ ms}^{-1}$, where

$$v = \frac{1}{20}t(5-t)^2, \qquad 0 \le t \le 8.$$

- (a) Sketch a velocity-time graph for the motion of P.
- (b) Find the values of t and the corresponding values of v when the acceleration of P is instantaneously zero. [5]

Total: 7

[2]

www.CasperYC.club

4. A particle P travels in a straight line. At time t s, the displacement of P from a point O on the line is s m. At time t s, the acceleration of P is $(12t - 4) \text{ ms}^{-2}$. When t = 1, s = 2 and when t = 3, s = 30. Find the displacement when t = 2.

www.CasperYC.club

5. A sled is moving down a steep hill in a straight line. At time t s, the acceleration of the sled is $a \text{ ms}^{-2}$ where

the *t* s, the acceleration of the sied is a ms where

$$a = \frac{1}{500} \left(20t^2 - t^3 \right), \qquad 0 \le t \le 20.$$

When t = 0 the sled is at rest at the top of the hill.

Find the distance the sled travels in the first 10s of its motion.

www.CasperYC.club

[5]

6. A car starts from the point A. At time t s after leaving A, the distance of the car from A is s m, where

 $s = 30t - 0.4t^2, \qquad 0 \le t \le 25.$

The car reaches the point B when t = 25.

(a) Find the distance AB.

(b) Show that the car travels with a constant acceleration and state the value of this acceleration. [3]

A runner passes through B when t = 0 with an initial velocity of 2 ms^{-1} running directly towards A. The runner has a constant acceleration of 0.1 ms^{-2} .

(c) Find the distance from A at which the runner and the car pass one another.

Total: 13

[2]

[8]

